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Abstract

The present paper computes the flow in a two-sided lid-driven square cavity by the Lattice 
Boltzmann Method (LBM). For some aspect ratios there exists a multiplicity of steady 
solutions, but the square cavity problem gives only a single steady solution for both the 
parallel and antiparallel motion of the walls. It is found that for parallel motion of the walls, 
there appears a pair of counter-rotating secondary vortices of equal size near the centre of a 
wall. Because of symmetry, this pair of counter-rotating vortices has similar shapes and 
their detailed study as to how they grow with increasing Reynolds number has not yet been 
made by lattice Boltzmann Method. Such a study is attempted in this paper through the 
LBM, as the results of the problem have the potential of being used for testing various 
solution methods for incompressible viscous flows. The results for the antiparallel motion 
of the walls are also presented in some detail. To lend credibility to the LBM results they 
are further compared with those obtained from a finite difference method (FDM).

Keywords: two-sided lid-driven square cavity; lattice Boltzmann method; D2Q9 model; 
bounce-back boundary condition; finite difference method.  

1. Introduction

Simulation of incompressible flows in two-sided lid-driven square cavity flow by FDM is 
discussed in some detail in the first part of our paper [1]. The present work focuses on the 
computation and validation of two-sided lid-driven square cavity flows by the Lattice Boltzmann 
Method. The LBM is a relatively novel technique that has become an alternative to the traditional 
numerical methods for computing fluid flow problems. The method is discussed in sufficient details 
in the books by Wolf-Gladrow [2] and Succi [3]. Chen and Doolen [4] have written an excellent 
review paper on the subject. Historically, LBM originated from the method of Lattice Gas Cellular 
automata (LGCA), which was first introduced in 1973 by Hardy, Pomeau and de Pazzis (HPP) [5]. 
In 1986, Frisch, Hasslacher and Pomeau (FHP) obtained the correct Navier-Stokes equations using 
a hexagonal lattice. Lattice Boltzmann Equations has been used at the cradle of Lattice Gas 
Automata (LGA) by Frisch et al. [6] to calculate viscosity. To eliminate statistical noise in 1988 
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McNamara and Zanetti [7] did away with the Boolean operation of LGA involving the particle 
occupation variables by neglecting particle correlations and introducing averaged distribution 
functions giving rise to the LBM. Higuera and Jimenez [8] brought about an important 
simplification in LBM by presenting an lattice Boltzmann Equation (LBE) with a linearized 
collision operator that assumes that the distribution is close to the local equilibrium state. A 
particularly simple version of linearized collision operator based on the Bhatnagar-Gross-Krook 
(BGK) [9] collision model was independently introduced by several authors including Koelman 
[10] and Chen et al. [11]. The lattice BGK (LBGK) model [12, 13] utilizes the local equilibrium 
distribution function to recover the macroscopic Navier-Stokes equations.

A review of computational and experimental studies on lid-driven cavity flow can be found in 
Shankar & Deshpande [14]. They have studied and analyzed corner eddies, nonuniqueness, 
transition and turbulence in the lid-driven cavity. The two-sided lid-driven rectangular cavity 
problem has been investigated in some details by Kuhlmann and coworkers [15]. Many researchers 
[17-20] carried out simulations of one-sided lid-driven cavity flow by the lattice Boltzmann method. 
Yong G Lai et al. [19] compared the lattice Boltzmann method and the finite volume Navier-Stokes 
solver and concluded that bounce-back boundary condition has better than first order accuracy. The 
present work uses Lattice Boltzmann BGK model (LBGK) with single time relaxation and bounce-
back boundary condition to investigate the flow driven by parallel and antiparallel motion of two 
facing walls in a square cavity for Reynolds number up to 2000. A nine-velocity incompressible LB 
model in 2D space has been used in the present work since it is known to give more accurate results 
compared to seven-velocity incompressible LB model.   

This paper is organized in four sections. In Section 2 numerical methods including LBGK 
with single time relaxation scheme and two-dimensional nine-velocity lattice model is described. In 
Section 3 the two-sided lid-driven cavity problem is described and the results with parallel and 
antiparallel motion of the walls are presented and validated. Concluding remarks are made in 
Section 4.

2. Numerical Methods
2.1. Lattice Boltzmann Method

As has already been mentioned the Lattice Boltzmann method (LBM) represents an 
alternative possibility for the direct simulation of the incompressible flow. It is seen that the 
accuracy of the Lattice Boltzmann method is of second order both in space and time [19]. The 
Lattice Boltzmann equation which can be linked to the Boltzmann equation in kinetic theory is 
formulated as [17] 
                                       ( , ) ( , ) = f t t t f ti i i    x xci                                                   (1)

where fi  is the particle distribution function, ci  is the particle velocity along the ith direction 

and i  is the collision term. The so-called LBGK model with single time relaxation, which is a 

commonly used lattice Boltzmann method is given by [17]

                1 (0)( , ) ( , ) = - ( , ) ( , )f t t t f t f t f ti ii i 
 
 
 

    x x x xci                                             (2)

where (0)( , )f ti x  is the equilibrium distribution function at ,tx  and   is the time relaxation 

parameter.

2.1.1. Two-Dimensional Nine-Velocity Square Lattice Model

The D2Q9 square lattice used here has nine discrete velocities. A square lattice is used, 
each node of which has eight neighbours connected by eight links as shown in Figure 1. 
Particles residing on a node move to their nearest neighbours along these links in unit time 
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step. The occupation of the rest particle is designated as
0

f . The occupation of the particles 

moving along the x- and y-axes are designated as 
1
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2
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3
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4
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Figure 1. Two-Dimensional Nine-Velocity Square Lattice (D2Q9) Model.

The macroscopic quantities such as density   and momentum density u  are 
defined as velocity moments of the distribution function fi  as follows:

                                                         
N

ρ= f ,ii=0
                                                                      (4)

                                                       
N

ρ = fii=0
 iu c                                                                    (5)

The density (which is directly related to the pressure) is determined from the particle 
distribution function. The density and the velocities satisfy the Navier-Stokes equations in 
the low-Mach number limit. This can be demonstrated by using the Chapman-Enskog 
expansion. In the nine-speed square lattice, a suitable equilibrium distribution function that 
has been proposed is [17]
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                     (6)

where the lattice weights are given by 40 1 2 3w  = 4/9,  w  = w  = w  = w  = 1/9  and 

5 76 8w  = w  = w  = w  = 1/36. The relaxation time is related to the viscosity by [19]

                                                                6 1 = 
2
                                                               (7)

where   is the kinematic viscosity measured in lattice units. It is seen that  = 0.5 is the 
critical value for ensuring a non-negative kinematic viscosity. Numerical instability can 
occur for a  close to this critical value. This situation takes place at high Reynolds 
numbers. In this work Reynolds numbers up to 2000 in a lattice size of 513 × 513 have been 
investigated.
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2.1.2. Boundary Conditions

In LBM several boundary conditions have been proposed [17-20]. The bounce-back 
scheme was used in these simulations to copy the velocity no-slip condition on walls. In this 
scheme, the particle distribution function at the wall lattice node is assigned to be the 
particle distribution function of its opposite direction. The basic argument for the use of ‘on-
grid bounce-back model' is that it is both mathematically applicable and quite relevant for 
LBE simulations of fluid flows in simple bounded domains. For this reason, this boundary 
condition has been employed here on the two stationary walls. However for the moving 
walls, the equilibrium boundary condition is applied [17]. At the lattice nodes on the moving 
walls, flow-variables are re-set to their pre-assumed values at the end of every streaming-
step. A lid-velocity of U = 0.1 has been considered in this work. Since Mach number is U/cs, 
where cs equals 1/ 3 a Mach number of 0.1732, well within the incompressible limit, is 
obtained.

2.1.3. Numerical Procedure

The velocities are assumed to be zero at the time of starting the simulations for all 
nodes. Initially, the equilibrium distribution function that corresponds to the flow-variables 
is assumed as the unknown distribution function for all node at t = 0. Also a uniform fluid 
density  =1.0 is imposed initially. The boundary conditions for the parallel and antiparallel 
wall motion are shown in Figures 2 (a) and 2 (b). The solution procedure of the above LBM 
at each time step comprise the streaming and collision step, application of boundary 
conditions, calculation of particle distribution function followed by calculation of 
macroscopic variables. The LBE is solved in the solution domain subjected to the above 
initial and boundary conditions on a uniform 2D square lattice structure. It is seen that the 
numerical algorithm of the lattice Boltzmann method is relatively simpler compared with 
conventional Navier-Stokes methods that use techniques like finite difference, finite volume 
or finite element to discretize the equations at the macroscopic level. Another benefit of the 
present approach is the easiness of programming.

     
Figure 2. Two-Sided Lid-Driven Cavity for (a) parallel wall motion (b) antiparallel 

wall motion with LBM boundary conditions for the moving walls.

2.2. Finite Difference Results for Comparison

         As the LBM method is intended to be used to compute the flow in a relatively unexplored 
problem, Ref [1] that uses FDM to compute the flow in the same geometry serves as an 
effective basis for comparison of most of the results presented in this paper. The FDM code 
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numerically solves the 2D Navier-Stokes equations in the stream function-vorticity form given 
by

                                                           
2 2

2 2
 +  =  -

x y
   

 
                                                          (8)

                                         
2 2

2 2
 +  +  =   + . 

t
1u  v

x y Re x y
     

  
 

    
    

                                        (9)

This form of the Navier-Stokes equation is known to be amenable for highly accurate 
numerical solution. The code, which is validated against established results, uses ADI technique 
and second-order accurate central differencing for space discretization. Consequently these 
results, which are the only ones available for comparison, are highly reliable. Thus, favourable 
comparison of the present LBM results with these accurate FDM results will grant legitimacy to 
them. This in turn would lend added credibility to the results for this relatively unexplored 
problem, so that the flow configuration could be used as a good test case for algorithm 
validation.

2.3. Validation of the LBM Code

The developed LBM code is used to compute the single lid-driven square cavity flow for 
Re = 1000 on a 129 × 129 lattice structure. Well-established results computed by Ghia et al. [16] 
exist for the same problem which is used for the present code-validation exercise. Figures 3(a) 
and 3(b) shows the steady-state x-component of the velocity along the vertical centreline and the 
y-component of the velocity along the horizontal centreline of the cavity at Re = 1000. Here the 
top lid moves from left to right and it is observed that the agreement between our LBM results 
and those of Ghia et al. [16] is excellent. The close agreement gives credibility to the result of 
our LBM code and it stands validated. The same figure also displays the FDM results [1] of the 
present authors, which again are in excellent agreement with these results.

       
Figure 3. Code validation: (a) u-velocity along vertical centreline and (b) v-velocity 

along horizontal centreline for single lid-driven square-cavity (Re = 1000).   

3. Two-Sided Lid-Driven Cavity Flow

An incompressible viscous flow in a square cavity whose top and bottom walls move in the 
same (parallel motion) or opposite (antiparallel motion) direction with a uniform velocity is the 
problem investigated in the present work. In the case of parallel wall motion, a free shear layer 
exists midway between the top and bottom walls apart from the wall bounded shear layers, whereas 
in the case of antiparallel wall motion, only wall bounded shear layers exist.
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3.1. Parallel Wall Motion

In the parallel motion we consider, both the upper and lower plates move from left to right 
in the x direction with the same velocity. Figure 4 shows the streamline patterns for various 
Reynolds numbers on a 513 × 513 lattice structure. Expectedly, the streamlines are found to be 
symmetrical with respect to the horizontal centerline. Figure 4(a) shows the streamline pattern 
for Re = 100. Two counter-rotating primary vortices symmetrical to each other are seen to form 
with a `free’ shear layer in between. At this Reynolds number the primary vortex cores are seen 
to be somewhat away from the centres of the top and the bottom halves of the cavity towards the 
righthand top and righthand bottom corners respectively. Figure 4(b) shows the streamline 
pattern for Re = 400. At this Reynolds number is seen also a pair of counter-rotating secondary 
vortices symmetrically placed about the horizontal centreline near the centre of the right wall. 
Figures 4(c) and 4(d) show the streamline patterns for Re = 1000 and Re = 2000 respectively. It 
is seen that with the increase in Reynolds number the primary vortex cores move towards the 
centres of the top and bottom halves of the cavity and the secondary vortex pair grow in size. At 
all the Reynolds numbers the counter-rotating pairs of primary and secondary vortices maintain 
their symmetry about the horizontal centerline. 

            
    (a) Re = 100                                                 (b) Re = 400

           
     (c) Re = 1000                                              (d) Re = 2000

Figure 4. Streamline pattern for parallel wall motion at (a) Re = 100 (b) Re = 400 
(c) Re = 1000 and (d) Re = 2000 on a 513 × 513 lattice.  
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    (a) Re = 100                                                 (b) Re = 400

            
     (c) Re = 1000                                              (d) Re = 2000

Figure 5. Vorticity contours for parallel wall motion at (a) Re = 100 (b) Re = 400 
(c) Re = 1000 and (d) Re = 2000 on a 513 × 513 lattice. 

                                          
Figure 6. A magnified view of secondary vortices for parallel wall motion at Re = 1000 

(a) LBM, (b) FDM [1].  
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Figure 5 shows the vorticity contours. In Figure 6 a magnified view of the secondary 
vortices at Re = 1000 is compared with those obtained by FDM [1] to show that the vortices 
have been captured accurately. The other results are now authenticated by comparison with the 
same reference. Figures 7-10 show the comparison for horizontal velocity profiles along vertical 
lines and vertical velocity profiles along horizontal lines passing through different points of the 
cavity for various Reynolds numbers. Agreement of the velocity profiles given by LBM and 
FDM is once again excellent. Table 1 gives the locations of the vortices given by the LBM and 
FDM for Re = 100, 400, 1000, 1500 and 2000. All these results show that the agreement is very 
good, which further substantiates the accuracy of the present LBM computations. We thus 
accurately list various flow details for this relatively unexplored configuration. 

                
Figure 7. Parallel wall motion, Re = 100: (a) horizontal velocity u along vertical lines 
(x=0.25, 0.50, 0.75), (b) vertical velocity v along horizontal lines (y=0.25, 0.50, 0.75).

                 
Figure 8. Parallel wall motion, Re = 400: (a) horizontal velocity u along vertical lines 
(x=0.25, 0.50, 0.75), (b) vertical velocity v along horizontal lines (y=0.25, 0.50, 0.75).

           
Figure 9. Parallel wall motion, Re = 1000: (a) horizontal velocity u along vertical lines 
(x=0.25, 0.50, 0.75), (b) vertical velocity v along horizontal lines (y=0.25, 0.50, 0.75).
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Figure 10. Parallel wall motion, Re = 2000: (a) horizontal velocity u along vertical lines 
(x=0.25, 0.50, 0.75), (b) vertical velocity v along horizontal lines (y=0.25, 0.50, 0.75).

TABLE 1: LOCATIONS OF THE VORTICES FOR PARALLEL WALL MOTION: a. FDM [1], b. LBM.

Primary vortex centres Secondary vortex centres

Bottom Top Bottom TopRe

x y x y x y x y

100
a.  0.6145
 b.  0.6146

0.2026
0.2027

0.6145
0.6146

0.7959
0.7957

…
…

…
…

…
…

…
…

400
a.  0.5845
 b.  0.5846

0.2388
0.2389

0.5845
0.5846

0.7553
0.7552

0.9873
0.9874

0.4638
0.4653

0.9873
0.9874

0.5264
0.5273

1000
a.  0.5354
b.  0.5342

0.2452
0.2438

0.5354
0.5342

0.7547
0.7552

0.9551
0.9542

0.4570
0.4697

0.9551
0.9542

0.5409
0.5391

1500
a.  0.5246
b.  0.5239

0.2452
0.2438

0.5251
0.5239

0.7527
0.7521

0.9443
0.9439

0.4569
0.4571

0.9444
0.9439

0.5429
0.5342

2000
a.  0.5132
b.  0.5108

0.2474
0.2489

0.5132
0.5108

0.7528
0.7497

0.9400
0.9378

0.4573
0.4598

0.9400
0.9377

0.5478
0.5389

3.2. Antiparallel Wall Motion

In the antiparallel wall motion the upper and lower walls move in opposite directions 
along the x-axis with the same velocity. Figure 11 shows the streamline patterns on a lattice size 
of 513 × 513 for the antiparallel wall motion. A single primary vortex centred at the geometric 
centre of the cavity is formed at low Reynolds numbers as shown in Figure 11(a) for Re = 100 
and Figure 11(b) for Re = 400. The streamline patterns for Re = 1000 and 2000 are shown in 
Figures 11(c) and 11(d) respectively. The increased Reynolds number results in the appearance 
of two secondary vortices near the top left and the bottom right corners of the cavity and a very 
small shift of the primary vortex centre from the geometric centre of the cavity. It will not be 
out of place to mention here that for the much-examined single lid-driven cavity flow the 
secondary vortex near the trailing edge of the moving wall does not appear at a Reynolds 
number as low as 1000 but much beyond that (at some value higher than 2000). It is also seen 
that with the increase in Reynolds number the shift of the  primary vortex centre from the 
geometric centre of the cavity is small so that it remains very close to the geometric centre even 
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for these higher values of Re = 1000 and 2000. However, in line with parallel wall motion, 
between Re = 1000 and 2000 the secondary vortices are seen to grow in size. The vorticity 
contours for various Reynolds numbers are shown in Figure 12. A magnified view of the 
secondary vortices (the ones at the top left corner) at Re = 1000 given by the present LBM and 
FDM [1] is shown in Figure 13. The agreement is found to be very good. Figures 14-17 show 
the comparisons for horizontal velocity profiles along vertical lines and vertical velocity profiles 
along horizontal lines passing through different points of the cavity for the various Reynolds 
numbers and the agreement is excellent once again. Table 2 gives the locations of the vortices 
given by the present LBM and FDM [1] for Re = 100, 400, 1000, 1500 and 2000. Clearly the 
results given by the LBM agree very well with those of the FDM. We thus see that the LBM 
results given by all the figures and tables are in excellent agreement with those given by the 
FDM [1]. This lends credibility to the current LBM results for this problem.

       
    (a) Re = 100                                                 (b) Re = 400

         
     (c) Re = 1000                                              (d) Re = 2000

Figure 11. Streamline pattern for antiparallel wall motion at (a) Re = 100 (b) Re = 400 
(c) Re = 1000 and (d) Re = 2000 on a 513 × 513 lattice. 
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    (a) Re = 100                                                 (b) Re = 400

           
     (c) Re = 1000                                              (d) Re = 2000

Figure 12. Vorticity contours for antiparallel wall motion at (a) Re = 100 (b) Re = 400 
(c) Re = 1000 and (d) Re = 2000 on a 513 × 513 lattice. 

                
Figure 13. A magnified view of secondary vortices for antiparallel wall motion at Re = 1000 

(a) LBM, (b) FDM. 
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Figure 14. Antiparallel wall motion, Re = 100: (a) horizontal velocity u along vertical lines 

(x=0.25, 0.50 and 0.75), (b) vertical velocity v along horizontal lines (y=0.25, 0.50 and 0.75).

                     
Figure 15. Antiparallel wall motion, Re = 400: (a) horizontal velocity u along vertical lines 

(x=0.25, 0.50 and 0.75), (b) vertical velocity v along horizontal lines (y=0.25, 0.50 and 0.75).

                       
Figure 16. Antiparallel wall motion, Re = 1000: (a) horizontal velocity u along vertical lines 
(x=0.25, 0.50 and 0.75), (b) vertical velocity v along horizontal lines (y=0.25, 0.50 and 0.75).

                      
Figure 17. Antiparallel wall motion, Re = 2000: (a) horizontal velocity u along vertical lines 
(x=0.25, 0.50 and 0.75), (b) vertical velocity v along horizontal lines (y=0.25, 0.50 and 0.75).
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TABLE 2: LOCATIONS OF THE VORTICES FOR ANTIPARALLEL WALL MOTION: (a) FDM [1], (b) LBM.

Primary Vortex (PV) Secondary Vortices (SV)

Bottom Right Top Left
Re

x y
x y x y

100 a.  0.5001
b.  0.5002

0.5002
0.5001

…
…

…
…

…
…

     …
      …

400 a.  0.5002
b.  0.5001

0.4981
0.4982

…
…

…
…

…
…

…
…

1000 a.  0.5009
b.  0.5011

0.4980
0.4981

0.9507
0.9499

0.1319
0.1324

0.0492
0.0478

0.8663
0.8637

1500 a.  0.5007
b.  0.5009

0.4982
0.4981

0.9308
0.9317

0.1156
0.1169

0.0692
0.0681

0.8856
0.8841

2000 a.  0.5002
b.  0.5003

0.5001
0.4996

0.9227
0.9238

0.1082
0.1081

0.0771
0.0761

0.8920
0.8875

4. Conclusion 

In this work a relatively unexplored flow configuration in a two-sided lid-driven square 
cavity is computed with the LBM. The flow is investigated for both the parallel and antiparallel 
motion of two of the facing walls. In the case of parallel wall motion, besides two primary vortices, 
there also appears a pair of counter-rotating secondary vortices symmetrically placed about the 
centerline parallel to the motion of the walls. About this centerline also appears a ‘free’ shear layer 
with the increase in Reynolds number. In the case of anti-parallel wall motion, besides a single 
primary vortex, there appears two secondary vortices near the trailing edges of the moving walls. 
Each of these near-tariling-edge vortices are seen to appear at a much lower Reynolds number 
compared with that in the single lid-driven cavity flow. The results of investigation of this relatively 
unexplored problem comprise figures and tables detailing streamlines and vorticity contours, 
various velocity profiles and features of vortices like their centres and shapes. All these LBM 
results compare very well with the only existing (and accurate) set of FDM results. This not only 
lends credibility to, but also benchmarks these results for the present flow configuration.  
Consequently these results, like those of the single lid-driven cavity flow, may be used for 
validating the algorithms for computing steady flows governed by the 2D incompressible Navier-
Stokes equations.
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