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Abstract 

 
In this paper, an updated CE/SE (space-time conservation element and solution element) scheme 
with second order accuracy is constructed on hexahedral grids and is extended to solve 
multiphase flows in porous media. The hybrid particle level set method is modified and 
applied for tracing the interfaces of fluids. Three benchmark problems are simulated 
numerically and the computational results are carefully compared with the results from 
other literature. Based on the single phase lid-driven cavity problem, the model of dual 
layer lid-driven cavity flow in porous media is also proposed as a benchmark problem. 
Results demonstrate that the computational scheme developed currently is high accurate, 
reliable and efficient for the porous multiphase flow problems considered. 
 
Keywords: Multiphase flow; CE/SE method; porous media 

 
 

1. Introduction 
 

The multiphase flows in porous media are highly nonlinear phenomena and hardly described 
by analytical solutions. Hence numerical methods have to be proposed and applied. However, two 
primary challenges are still confronted in the numerical methods, including the numerical scheme 
for the governing equations and the special treatments for the fluid-fluid interfaces. The governing 
equations for the multiphase flows in porous media can be traditionally formulated in two ways 
known as Lagrangian and Eulerian method.  

For the Lagrangian approach, the meshes are fixed within and deformed with the fluid. The 
well-known Lagrangian scheme is the Lattice Boltzmann method. Up to now, several lattice 
Boltzmann models (LBM) have been proposed for fluids flow in porous media. Typically, a 
generalized lattice Boltzmann model (GLBM) was proposed for isothermal incompressible flow 
through porous media by Guo and Zhao [1]. Yan et al. [2] used GLBM for simulation of air flows 
in heterogeneous porous media. The main limitation of the Lagrangian approach is that the results 
are inaccurate with using the finite difference approximation when the grid cells are distorted 
significantly [3].  

In the Eulerian approach, the grids are fixed in space through which fluids flow. Deiber and 
Bortolozzi [4] applied vorticity-stream function scheme to study natural convection in a porous 
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annulus. Sman [5] numerically solved the DFB model with 3D finite element solver (FIDAP). 
Costa et al. [6] used the control volume based finite element method to simulate non-Darcian flows 
through spaces partially filled with a porous media. Reis et al. [7] applied the finite volume method 
to simulate the impact of liquid droplets on porous surfaces. Karim et al. [8] applied the simplified 
marker and cell (SMAC) method to simulate wave transformation in porous structure using volume 
of fluid (VOF) based two-phase fluid model. But it is difficult to identify the material interfaces 
accurately at each time step. Therefore, a high-accuracy fluid-fluid interface tracing algorithm must 
be adopted for the Eulerian approach.  

The CE/SE method (the space—time Conservation Element and Solution Element method) 
originally proposed by Chang [9,10] is a novel high-resolution CFD method for hyperbolic 
conservation laws. It substantially differs from other traditional well-established methods. It has 
many features, such as a unified treatment of space and time, satisfying both local and global flux 
conservation in space and time by introduction of the Solution Elements (SEs) and Conservation 
Elements (CEs). The CE/SE method has been extended to a high-order scheme [11]. Chang et al. 
[12] used this method for the aeroacoustic computations; Guo et al. [13] extended the CE/SE 
method to viscous flows. Recently, Wang et al. [3] proposed an updated first order accuracy CE/SE 
scheme and employed to solve the complex elastic–plastic flows with solid features; Yang et al. 
[14] extended the updated CE/SE approach to solve single phase flows in porous media, and Yang 
et al. [15] introduced the updated CE/SE scheme into simulation of multiphase flows in porous 
media. Zhang et al. [16] developed a second order accuracy CE/SE based on hexahedral grids. 
However, to our best knowledge, the CE/SE method with second order accuracy has not been 
employed to solve the complex multiphase flows in porous media. 

  The Level Set method (LS) [17] is effective for tracing moving interfaces of fluids. The main 
idea of the Level Set method lies in introduction of the implicit function to describe the advection of 
a certain interface. The LS is appropriate to capture the interfaces undergoing extremely topological 
changes. The hybrid particle Level Set method (HPLS) was developed by Enright et al. [18], 
combining the advantages of the Eulerian Level Set approach and the Lagrangian method based on 
marker particles, which is a robust technique to overcome the issue of mass loss (volume loss for 
the incompressible case). 

In the present work, we propose a new definition of SE and CE and construct an improved 
CE/SE scheme with second order accuracy. The new definition is based on the hexahedron mesh. 
Furthermore, we apply the improved CE/SE scheme to solve the problems of two-dimensional 
multiphase flows in porous media. The hybrid particle Level Set approach  is employed for tracing 
fluid-fluid interfaces. For verifying the accuracy, resolution, and efficiency of the improved CE/SE 
scheme, we simulate the well-known Taylor instability problem and the transformation and motion 
of droplets by gravity. The computational results are carefully compared with the results from other 
literature. We finally simulate the shear-driven flow in a dual layer square cavity in which 
deformation of interface and streamlines are fully manifested. 
 
2.  Numerical methods 
 
  2.1   Governing equations 

 
We assume that (1) the supercritical CO2 and brine water are immiscible, and the saline aquifer 

is the isotropic and homogeneous porous media. Thermal equalibrium is also assumed. (2) the two 
fluids are viscous, Newtonian and incompressible, (3) the flow is isothermal, the interface tension is 
taken as constant and there is no interfacial resistance to mass transfer, and (4) mass transfer is 
assumed to have no effect on the physical properties of the system. By employing a CSF (continuum 
surface force) model [19] of the surface tension force for the level set approach [17], the 
surface tension is reformulated as a volume force.  
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Where φ is a smooth level set function, which is positive outside the interface, negative inside 
the interface and zero at the interface, δ is a surface tension delta function and κ is the 
interface front curvature. In a two-dimensional coordinate system, mass and momentum 
conservation [15] with the level set approach incorporated are written in terms of 
dimensionless variables as 
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with dimensionless groups of the Reynolds, Froude, Weber numbers, Darcy number and 
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respectively. ρ ,μ  are the dimensionless ratios of the viscosity and density.ϕ is the porosity 
and K is the permeability. For simplicity, hereafter we denote ρλ  and μλ  as ρ  and μ  
respectively. To prevent numerical instability, it is necessary to smooth the values of the 
density ερ and viscosity εμ  as: 
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The following equation will evolve the zero level set function [15]: 
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The above level set equation is solved using a five-order WENO discretization and Runge-
Kutta method [20]. Yang et al. [21] presented a reinitialization equation insure that values for 
level set function will not be greatly distorted. The numerical discretization of the 
reinitialization equation of the level set function will not preserve the total mass conservation. 
To overcome this difficulty, the Particle level set method [18] can be presented to conduct the 
solution of the reinitialization equation. The hybrid particle Level Set method is a coupling 
method of Lagrangian method and Eulerian method, which merges the best aspects of 
Eulerian front capturing schemes and Lagrangian front-tracking methods for improved mass 
conservation in a fluid flow. Massless marker particles were inserted to correct mass loss in 
level set function by using the characteristic information of the escaped massless marker (as 
shown in figure1). The particle level set method maintains the nice geometric properties of 
level set method, and performs favourably in the conservation of mass and for interface 
resolution. The particle Lagrangian function [18] is written as:  
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where is pr the location of the particle, and V is the particle velocity. The third-order Runge-
Kutta scheme is used to solve Equation6b. 

 

(i,j) (i+1,j)

(i+1,j+1)(i,j+1)

Pre-rivised interface

Post-revised interface

Escaping minus particle

Plus particle

Minus particle

 
Figure1. Schematic map of the hybrid particle Level-Set method (HPLS)     

 
  2.2   Improved CE/SE scheme with the second order accuracy 

 
An updated CE/SE scheme based on hexahedral grids is proposed. The SE (Solution 

Elements) and CE (Conservation Elements) are demonstrated in figure2. 
The governing equation(1) and equation(2) can be rewritten as the Euler equation [14] 
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where Q , E , F ,S  are vectors of primary variable, flux in x-direction, flux in y-direction and 
source, respectively. Let ),,( nkj  denote a set of space-time mesh points, where 
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2
1,0 ±±±=k for y. A SE is 

defined as the vicinity of a mesh point and the whole space-time region is divided into non-
overlapping CEs. Assume that the physical variables in every SE are approximated by the 
Taylor’s expansions at the mesh point associated with the SE, and the conservation equation 
(4) is satisfied in every CE. Let xx =1 , yx =2 , tx =3  be considered as the coordinates of a 
Euclidean space 3E . By means of the Gauss’ divergence theorem, equation (7) is rewritten in 
form of  
∫ ∫=⋅)(VS V mm dVSdsH                                                            (8) 

Where, ),,( mmmm QFE=H  is the space-time flux vector, here mQ , mE  and mF  are the 
components of vector Q , E  and F , and respectively., and mS  are the components of the 
source term vector. )(VS  is the boundary of an arbitrary space-time region V  in 3E , 

ns ⋅= σdd  with σd  and n , respectively, being the area and the outward unit normal of a 
surface element on )(VS . figure2(a) shows the projection of mesh points on the yx − plane, 

in which the interval between the mesh points • and ○ is 2/tΔ in the time direction or 
2
1 in 

the mesh number n . For any point P′ ),,( nkj  on which the variables are solved, define the 
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solution element SE(P′) constituted by the three vertical planes intersecting at P′ ),,( nkj and 
their neighborhood space as demonstrated in figure2(b). Suppose that mQ , mE  and mF  at point 

),,( yxt  in SE(P′) are approximated by the second-order Taylor expansions at P′ ),,( nkj , i.e., 
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Here, Pxxdx ′−= , Pyydy ′−= , Pttdt ′−= , where 'p
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y and 'p
t  are the position coordinates 

of point 'P . Substituting equation (9) into equation (7) gives 
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The above equations imply that the variables required in computation are ')(

PmQ , 
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PmyQ , because mS , mE and mF are the function of mQ . Define the Conservation 
Element CE( P′ ) as illustrated as figure2 (c ). It can be seen from figure1(c ) that CE( P′ ) is 
related to not only SE(P′) but also the SEs of SE(A), SE(C), SE(E) and SE(G). Note that the 
values of physical variables on mesh point A,C,E and G are known. Assume that the integral 
conservation laws are satisfied in every CE. Integrating equation (8) on the surfaces of 
CE( P′ ) with the aid of equation (9) , we find 
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Figure 2. Mesh construction of the updated CE/SE method   (a) mesh points, (b) SE (Solution 
Elements) and (c) CE (Conservation Elements) 

 
Using the continuity conditions at points A′ , C ′ , E ′  and G′ , the derivatives of mQ  with 
respect to x  and y  are obtained. 
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in this study) [9]. 
It should be noted that ')(

PmQ  can not be obtained explicitly form equation(11) due to 
the source term ')(

PmS . As ')(
PmS is a function of ')(

PmQ , a local Newton iterative procedure 
is usually needed to determine ')(

PmQ . In the present work, to avoid the iterative procedure 
and save computation time, ')(

PmS  is replaced by their linear prediction of current time in 
equation(11) [3,14,15], 

)
8

)(
4
1)(

24
1)(

24
1)( StF

y
tE

x
tQQ

x
yQ

y
xQ PmyyPmxxPm

Δ
+

Δ
Δ

+
Δ
Δ

+=
Δ
Δ

+
Δ
Δ

+ ′′′         

tStSS
4

~ Δ
+=           (14) 

Where tS is the time derivative of S . ')(
PmQ  can be directly solved without any 

iteration, since the time derivative of AmS )( , EmS )(  , CmS )(  and GmS )( are all known at current 
time.  

 
2.3   Pretreatment method  
 

The coupling between velocity and pressure is performed by artificial compressibility 
method [22] and the pretreatment method [14]. equation (15) can be rewritten in form of 

0)(2 =
∂
∂

+
∂
∂

+
∂
∂

y
v

x
uCP ρ

τ
φ                                                       (15) 

where τ  is the visual time, and 2C  is the coefficient effecting the numerical stability. 
Substituting the visual time derivative of velocities into equation (15), we obtain 
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Using the time operator splitting method [15] to split pressure item in momentum 
equation (17), we obtain 
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We interpret equation (18a) as yielding an intermediate value of n
vQ , denoted by 2
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where m  is the iteration step. Assume that we have already carried out m  iteration.  

Then, for the 1+m  iteration, by substituting 2
1

+n

vQ  into equation (19a) and using CE/SE 
method, 1+mP  can be calculated at iteration step 1+m . Substituting 1+mP  into equation (19b), 

1+mU  is obtained. The above procedure is repeated for a number of iteration, convergence is 
achieved when mm UU −+1  become less than a prescribed value (10-6) at all grid points. After 
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convergence, 1+nU  can be obtained at time step 1+n . These governing equations are 
discretized on staggered orthogonal grid (as shown in figure 1(a) which eliminates the 
possibility of a checkerboard pressure pattern[3]. 

 
4. Numerical Validation 
 

 4.1   Taylor instability problem 
 

Simulations of immiscible two-phase fluid flow instability were carried out to test the 
validity of the proposed CE/SE method. As the benchmark problem, Taylor instability 
problem [23] is commonly used to study the effects of fluid density differences (under the 
influence of gravity) and viscosity ratios on the stability/instability of immiscible flows. To 
initiate the instability at the fluid–fluid interface, the initially flat front was perturbed by a 
sinusoidal deformation [23]. Here, we considered displacement of a less dense fluid by a 
denser fluid. The ratio of viscosity and density are 1 and 3, respectively, for Re=1000. We 
assume that the porosity and Darcy number are 0.9 and 1.0×104, respectively [15]. The slip 
boundary conditions are applied to the left and right sides, while non-slip boundaries for the 
top and down sides. figure3 demonstrates that as time was increased, the mass interface varied 
from a single smooth finger to a highly unstable fragmented dendritic. The results are in 
excellent agreement with that obtained by Guermond [23]. 

 
4.2.   Transformation and motion of droplets by gravity in porous media 

 
The results of transformation and motion of droplets by gravity in porous media are 

shown in figure4. From figure4 we can find that the second-order accuracy CE/SE method and 
HPLS scheme performs well agreement with the results by FVM (Finite Volume Method) and 
Level Set method [24]. But the interfaces calculated by CE/SE are more accurate than that of 
FVM. It demonstrated that there is no discontinuity occurrence in the final deformed droplet 
calculated by CE/SE scheme. For both one and three droplets falling cases, the Darcy number 
and porosity are 104 and 0.9, respectively. Some implementation issues for droplets 
deformation are discussed in [15, 24]. We will not repeat the discussions.  

 
4.3.   Waves transportation in porous medium 

 
The model was developed by coupling an ordinary porous flow model based on 

equations (2, 3,6,7) for porous media, and a two-phase flow model based on classical Navier–
Stokes equations. A unique solution domain was established with proper treatment of the 
interface boundary between water, air and the structure [8]. The hybrid particle Level Set 
method was used to trace the interface between water and air. The resistance to flow caused 
by the presence of structural material was modeled in terms of drag and inertia forces. The 
updated CE/SE method and the hybrid particle Level-set method are used to calculate the 
wave height in both free and porous flows. The boundary and initial conditions as well as 
model parameters are found in the paper by Karim [8].For detailed information of model 
configuration of wave propagation in porous media, reader should refer to Karim et al. [8].   

Here we complete the comparison of CE/SE calculated and measured non-dimensional 
wave heights for T = 1.6 s, HI = 0.076 m, B/L = 0.5 [8], and porosity of 0.43. figure5 shows 
the CE/SE calculated wave height and the experimental results. It found that the wave height 
calculated by CE/SE in the clear flow domain is found identical to the experimental results. In 
the porous flow, the CE/SE calculated results are a little systematically higher than that of the 
experiment. The main reason results from the drag force components and inclusion of the 
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surface tension in the momentum equation. We can see the inertial coefficient is determined 
by Fb  in our model, while Karim et al. [8] used numerical calibration technique to estimate the 
drag coefficients, which is not porosity dependent. Another key issue is that the surface 
tension mechanism is introduced in our model. Straughan [25] pointed that the surface tension 
in porous flows plays a vital role to determine the flow characteristics. From this point, it is 
reasonable to involve the surface tension in the momentum equations. Hence, it inferred that 
the method for the determination of drag coefficients are the primary contribution to the 
uncertainty of the CE/SE calculated wave heights in the porous media. Generally speaking, 
the updated CE/SE performed well.  

 
(a) 

 
(b) 

Figure3. Finger evolution (a) CE/SE and (b) Guermond 2000) 
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(a) 

 
(b) 

 
(c) 

 

 
(d) 

Figure 4. Deformation and motion of droplet (a) and (b) present CE/SE results and (c) and (d) 
denote FVM results [24]. 

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

NS Equation Poroelastic

W
at

er
 H

ei
gh

t

Distance

 Observed
 CE/SE

 
Figure 5. CE/SE calculated water height versus dimensionless distance in both clear and porous 
fluid 
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5. Dual Layer Lid-Driven Cavity Flows in Porous Medium 
 

Lid-driven cavity flow has served as a benchmark for evaluating numerical schemes such 
are Ghia et al. [26] for orthogonal cavity and Dermirdzic et al. [27] for non-orthogonal cavity flows. 
Patil et al. [28] applied lattice Boltzmann method for simulating steady two-dimensional rectangular 
deep lid-driven cavity flow. Incompressible flow through isotropic granular porous media has been 
studied by Andrei et al. [29]. Al-Amiri [30] numerically investigated the effects of Darcy number 
and Richardson number on the flow and thermal behaviour for a lid-driven cavity filled with porous 
medium. Krishna et al. [31] numerically studied the effects of aspect ratio and skewness on flow 
behaviour for a lid-driven porous cavity. Yang et al. [15] numerically simulated the effects of 
Reynolds number, Darcy number (permeability) and porosity on the cavity flow field. The current 
studies involving lid-driven flows are primarily limited to either single-phase fluid or orthogonal 
square porous cavity. To the best of our knowledge, no work has been reported by considering dual 
layer lid-driven cavity flows in porous media based on the multiphase flow model. 

Hence, it is critical to propose a benchmark problem for dual-layer lid-driven cavity flow in 
porous media. Here we set up a model for dual-layer lid-driven cavity flows in porous medium. The 
concept model of the dual layer lid-driven cavity flow is illustrated in figure6. The grid domain is 
201×401. Avoiding the fluid instability, a light fluid is laid on the heavy fluid with different density 
and viscosity. The flow is driven by a lid with the velocity of 1.0 on the top boundary and all other 
boundaries are assigned to be on no-slip walls, as shown in figure6. We calculated eddies and 
vortex in the dual cavity for the porosity of 0.2 , We=20，Fr=1 and Reynolds number of 100. 
figure7-9 shows the stream lines and the interface for Darcy number of 102, 0.25 and 0.01, 
respectively. For individual Darcy number, the steady results show that the interface presents as a 
shear layer, which induced eddies and vortex. As the Darcy number increased sharply, the number 
of eddies and vortex were elevated, and the strength of eddies were enhanced, as expected. As the 
Darcy number varies from 0.25 to 102, the interface changes from horizontal lines to complex curly 
lines.  

 
figure6. Schematic illustration of a dual layer lid-driven cavity flow 
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(a) 

 
(b) 

 
(c) 

 
(d) 

figure7 Revolution of the interface and stream lines at time of (a) 50, (b) 100, (c) 150, (d) 200, 
respectively, for Darcy number 102 and viscosity ratio 50 

 
Revolution of the stream lines and motion and deformation of the interface for Da=100 are 

shown in figure7. Dot lines present the stream lines, while dash lines denote the interfaces. At time 
of 50, formation of one secondary vortex takes place at the left upper corner caused by the shearing 
of the wall. The upper cavity is dominated by an eddy. In the down cavity there exists an eddy 
caused by the surface tension. The pattern of stream lines is analogue to the overlapping of two 
single cavity flows, which characterizes the basic property of the dual layer lid-cavity flow in 
porous media. The interface becomes slightly skewed, with the left side moving down and right side 
moving up. At time of 100, due to the surface tension effects, formation of two vortices take place 
in the bottom left and right, respectively, in the down cavity. The eddy strength becomes enhanced 
in the upper cavity, accompanied with one second vortex at the bottom left corner of the upper 
cavity, which results from the friction of the interface and the wall. The eddy in the down cavity 
moves up, towards the upper right. The interface deformation changes sharply and tends to move 
up, towards the upper right, as a curly line. At time of 150, two vortices at the left and right bottom 
vanish in the down cavity, while the eddy becomes stronger, and further moves up as a belt-shaped. 
Formation of the two vortices takes place at the left bottom and upper left corner in the upper 
cavity. The flow gradually tends to become stable. The interface nearly becomes parallel to the 
stream line. As time reaches to 200, the flow completely remains in the stable state, with the 
interface fully parallel to the stream line. The vortex becomes weaker at the bottom left in the upper 
cavity. Because of the shearing effects induced by the interface, there exists a vortex at the upper 
left corner in the down cavity. The eddy in the down cavity becomes enhanced. For Darcy number 
of 100, the energy generated by the moving lid is transferred into the down cavity. 

Figure 8 illustrates the stream lines and the interface for different time at Darcy number of 
0.25. Due to the increases of drag forces caused by the solid matrix, the energy generated by the 
moving lid was depleted by the motion of the interface. Hence, no secondary vortices take place, so 
that the reverse shear forces can’t be induced. Therefore, the left side of the interface moves up, 
while the right side skews down. In the upper cavity, there only exists a skewed eddy at the upper 
right corner.  

As shown in figure 9, the eddy slowly diminishes with further reduction of Darcy number to 
0.01. That implied the drag forces are elevated remarkably. The energy generated by the moving lid 
can’t be transferred into the deep cavity, due to the energy depletion resulting from the motion of 
the interface. There also no secondary vortices exists near the interface, hence, the interface almost 
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remains horizontal. Also, the viscous effect becomes more limited to the top region, as evidenced 
by the close spacing of the streamlines in figure 9. It can be observed that by the reduction of Darcy 
number from 100, eddies and vortices get reduced because of the obstruction for the flow due to the 
solid matrix. It’s found that the lid-driven cavity flow in porous medium is significantly influenced 
by Darcy number for the Reynolds number and porosity considered. It notices that the flows 
mentioned above are in unstable state. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 8. Revolution of the interface and stream lines at time of (a) 50, (b) 100, (c) 150, (d) 200, 
respectively, for Darcy number 0.25 and viscosity ratio 50 

 
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 9. Revolution of the interface and stream lines at time of (a) 50, (b) 100, (c) 150, (d) 200, 
respectively, for Darcy number 0.01 and viscosity ratio 50 
 

From all results mentioned above the application of update high-order CE/SE method is 
successfully extended. It is an effective and reliable approach to calculate multiphase porous flow 
with interface, which can be treated accurately. CE/SE method has following advantages: it is easy 
to implement and programming, higher accuracy and efficiency.  
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6. Conclusion 
 

 In this paper, the second order accuracy CE/SE scheme, which is based on the hexahedron 
mesh, is proposed and used for simulations of multiphase flows in porous media. Further, the 
hybrid particle Level Set method is modified to accurately capture the fluid-fluid interface in porous 
flows. For validation and evaluation of the proposed method, Taylor instability problem, droplets 
falling problem and wave propagation in porous media are numerically simulated. Comparison 
between CE/SE calculated results and these of other literatures verified the reliability and accuracy 
of the updated CE/SE method. Furthermore, as a benchmark problem, the dual layer lid-driven 
porous cavity is developed and carefully simulated. Results show that the interface, as a shearing 
layer, has a great impact on the energy propagation into deep cavity, which is induced by the 
moving lid. We mainly study the effects of Darcy number on the revolution of stream lines and the 
motion and deformation of the interface. It indicates that Darcy number dominates the 
characteristics of the dual layer lid-driven porous cavity for the Reynolds number and porosity 
given. Future works will be completed by considering the effects of Reynolds number, porosity, 
aspect ratio and skewness on flow behaviour for this dual layer lid-driven porous cavity. 
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NOMENCLATURE  
 

SVF
r

            continuum surface force 
φ                 level set function 
δ                 surface tension delta function 
κ                 interface front curvature 

iu                velocity component 
ϕ                 porosity  
K                 permeability 

)(φεH         Heaviside function 
P                pore pressure 

pr                location of the particle 

V                particle velocity 
3E               Euclidean space  

Re              Reynolds number 
Fr              Froude number 
We              Weber numbers 
Da              Darcy number 
 ix               space coordinate 

t                time 
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