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Abstract 
 

In this paper, we present an interior penalty formulation for solving equations containing 
third spatial derivative terms, in the context of a high order spectral volume method. The 
motivation for this approach comes from the “penalization method” formulated by Kannan 
and Wang (Kannan R, Wang Z.J., “A Study of Viscous Flux Formulations for a p-Multigrid 
Spectral Volume Navier Stokes Solver, “Journal of Scientific Computing, 41(2), 2009, 165 
- 199) developed for discretizing the second order viscous fluxes. A linear Fourier analysis 
was performed to compare and contrast the dispersion and the dissipation properties of the 
new formulation and the existing LDG (Local Discontinuous Galerkin) formulation. The 
analyses performed on the linear and the cubic partitions showed improvement over the 
traditional LDG formulation. The analysis performed on the quadratic partition showed 
significant dispersion, when compared to the LDG scheme. The new formulation is easy to 
implement and is highly symmetrical. Numerical experiments were conducted and the 
results were in accord with the analysis results. In general, the formulation is general and 
can be used even for higher dimension problems. 
.  
Keywords: Spectral Volume method; LDG; Penalty formulation; Linear Fourier analysis; 
Stability.   

 
 

1. Introduction 
 

The spectral volume (SV) method was originally formulated by Wang et al 
 [21,22,23,24,25,16]  and further improved by Kannan et al  [3,4,5,6,7,9,10,11,12,13,14] for 
conservation laws on unstructured grids. The spectral volume method is a high order formulation 
and can be viewed as an extension of the Godunov method to higher order by adding more degrees-
of-freedom in the form of subcells in each simplex. Every simplex is comprised of a semi-structured 
lattice of these subcells. The simplex is referred to as the spectral volume and the subcells are 
referred to as the control volumes (CV). The degrees of freedom are the CV averaged solutions and 
are updated using a finite volume procedure. 
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The spectral volume method is akin to the more famous discontinuous Galerkin (DG)  [1,2] 
 formulation. The common properties include (i) discontinuous solution space, (ii) possessing 
multiple degrees of freedom (DOF) within a given element, (iii) capable of providing high order 
accurate solutions and (iv)compactness. The main difference is on the handling of the DOF: the DG 
employs the elemental nodal values as DOF, while the spectral volume being a derivative of the 
finite volume has subcell averages as its DOF. 

Yan et al  [26,27]  implemented the LDG formulation to solve equations containing third order 
spatial derivative terms in the DG context. Recently, Kannan developed a formulation to solve 
equations containing third order spatial derivative terms using the 
 LDG (Local Discontinuous Galerkin) formulation  [9]  in the SV context. The crux of the above 
formulations was to alternate the direction of the numerical fluxes. Even though both the above 
works yielded good results, they were not symmetrical. Earlier, Kannan et al  [5,12]  had proved that 
the solution can be dependent on the choice of the direction, during his studies involving the LDG 
scheme for the diffusion equation. It is definitely possible that this phenomenon is possible in the 
current context.  

An interior penalty formulation to discretize the higher order spatial derivative terms is 
presented in this paper. This approach borrows ideas from the seminal works of Kannan and Wang 
 [5],  wherein a length based penalizing factor is used as a penalty term to the central (averaged) flux. 
Hence this approach is more symmetrical than the LDG approach. Thus the solution is never 
dependent on the choice of the direction. Kannan and Wang  [5]  systematically demonstrated that 
this approach is more accurate than the existing LDG formulation for second derivative terms. A 
linear Fourier analysis was conducted to compare the diffusion and the dispersion properties of the 
two formulations. The analyses performed on the linear and the cubic partitions showed 
improvements over the traditional LDG formulation. The analysis on the quadratic partition showed 
significant dispersion, when compared to the LDG formulation. Numerical experiments were 
conducted and their results were in accord with that of the analyses. 

The paper is organized as follows. In section 2, we review the basics of the SV method. After 
that, the LDG and the penalty formulations for high order spatial derivatives are discussed in detail 
in section 3. A detailed linear analysis is performed for the two formulations in section 4. Numerical 
results are presented in section 5. The conclusions from this study are summarized in Section 6.    

. 
 
2. Basics of the spectral volume method 

2.1. The SV method for hyperbolic conservation laws 
 

Consider the general conservation equation 

                    0))((
=

∂
∂

+
∂
∂

x
Qf

t
Q ,                                                        (2.1) 

 
where Q is the vector of conserved variables and )(Qf is the vector of fluxes. The 
Computational domain Ω is discretized into I non overlapping cells called spectral volumes. 
Each of these spectral volumes are further partitioned into smaller cells called control volumes 
(CV), denoted by Cij. Figure 1 shows linear, quadratic and cubic partitions in 1D.  

 
 

       
                (a)                                      (b)                                     (c) 

Figure 1. Partitions of a SV in 1D . Case (a): Linear reconstruction; Case (b): Quadratic 
reconstruction; Case (c): Cubic reconstruction. 
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It can be observed that 1+k control volume solution averages are required to construct a 
degree k  polynomial. Integration of equation (2.1) over the control volume Cij results in  

0)(1
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, =−+
∂

∂
−+ jiji

ji

ji FF
Vt

Q
,                                         (2.2) 

 
where 

2
1, +ji

F is the flux vector through the interface between Cij and Cij+1 ,  
2
1, −ji

F is the flux 

vector through the interface between Cij and Cij-1 and jiQ , is the control volume averaged 
solution of the control volume Cij. The fluxes in equation (2.2) are obtained from high order 
reconstructions of the CV averaged conserved variables. In other words, given the CV averaged 
conserved variables, a degree k polynomial can be constructed such that it is (k+1)th  order 
approximation to Q.  In other words, we can write the polynomial as 
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where the shape functions Lj(x,y) satisfy 

                    nj
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The fluxes are discontinuous across the SV interfaces. Approximate Riemann fluxes like 
the Rusanov flux  [17]  or the Roe flux  [16]  are used to handle the discontinuity. 

 
2.2. The SV method for the diffusion equation 

 
Consider the following diffusion equation, applied inside a domain Ω  

                                          2
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An auxiliary variable is defined for the gradient:  

x
uq
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= .                                                         (2.6) 

The diffusion equation (2.5) becomes  
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Integrating equations (2.6) and (2.7) and applying the Gauss-divergence theorem,  
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where  ijq  and iju  are the CV averaged gradient and solution in Cij. Since the solution is 
discontinuous at the SV interface, u and q  at SV boundaries are replaced by numerical fluxes 
q)  and u) . Equations (2.8) and (2.9) become  
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The LDG approach has been the most common formulation for discretizing the viscous 
fluxes  [20,5] . The numerical fluxes are defined in the following manner:  
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Luu =) ,                                   (2.12) 

Rqq =) ,                                                        (2.13) 
where Lu and Ru are the left and right state values of the solution and Lqr and Rqr are the left and 
right state values of the gradients. 

The penalty formulation was first implemented by Kannan and Wang  [5]  in the SV 
context.  This formulation is symmetrical and is given by 

2
)( LR uuu +

=) ,                                                    (2.14) 
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where, rA is the area of the face of the CV in consideration(equals unity in 1D), ijV  is the CV 
volume. More details on this formulation, including its similarity to an approximate Riemann 
flux, origin and stability can be found in  [5].   

 
3. The SV formulation for third order spatial derivatives 
 

Let us consider the following simple linear equation:  
                                                              0=+ xxxt uu .                                                      (3.1) 
The standard procedure is to rewrite equation (3.1) into a first order system  [9]:  

0=+ xt pu , xqp = , xuq = .                                      (3.2) 
Integrating the above equations over the CV results in the below set of equations:  
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u, p and q at SV boundaries are replaced by numerical fluxes u) , p) and q) .  
 

3.1. The LDG formulation 
 

The LDG formulation for discretizing third order spatial derivatives in a SV context was 
proposed by Kannan et al  [9].  Two choices were reported by Kannan et al  [9]:   

Choice a 
Luu =) , Rqq =) , Rpp )) = .                                               (3.6) 

Choice b 
Ruu =) , Rqq =) , Lpp )) = .                                               (3.7) 

 
3.2. The Interior Penalty formulation 

 
The starting point of the interior penalty formulation is the use of Ruu =)  in equation (3.5), 

to obtain q . A high order reconstruction is performed to obtain q on the faces. p is computed 
using two approaches (equation 3.4): 
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1. The first approach uses a central flux for 
2

)( LR qqq +
=) to obtain p . This p is denoted 

as AVGp  
2. The second approach uses the q (on the CV faces) from the CV in consideration.   This 

p is denoted as SELFp  
A high order reconstruction is performed on AVGp  to obtain LAVGp _ and RAVGp _ . 

LSELFp _ and RSELFp _ are obtained in a similar manner. Either LAVGp _ or RAVGp _  can be used for p)  
in equation (3.3), for the CV faces which do not lie on the SV boundary (NOTE:  

LAVGp _ = RAVGp _ for the CV faces, which do not lie on the SV boundary). 
The following penalization is used for p)  in equation (3.3), for the CV faces that lie on the 

SV boundary: 

 )(
22
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λ) ,                           (3.8) 

where iV  is the volume of the SV associated with that face and λ  is a positive constant. 
Thus it can be seen that the current formulation displays higher degree of symmetry, though not 
100% since the starting step uses Ruu =)  in equation (3.5), to obtain q .  

The starting step can be modified to use Luu =) . This is equally valid. Averaging (i.e. 

2
)( RL uuu +

=)  was found to be unstable.  

The motivation behind employing the penalizing term in equation (3.8) arises from 
Rusanov’s approximate Riemann flux. The Rusanov flux comprises of a central flux and a 
dissipation term. The dissipation term is proportional to the jump between the left and right 
solution states. It is also proportional to the maximum eigen value of the Jacobian matrix. One 
can see a connection between the Rusanov flux and equation (3.8). Both have a central 
component and a dissipation (called penalty in here) component. The Jacobian term however 
cannot be evaluated analytically for this scenario. So using dimensional analysis, it can be 
shown that the eigen value has a dimension of 1/length. Hence the form for equation (3.8).  

NOTE:  Based on the above argument, the only restriction on λ  is that it is positive. It 
cannot predict the magnitude required to make the system stable. This will be determined using 
a Fourier analysis in the next section in  [5].   

 
4. Fourier analysis for the LDG and penalty formulations 
 

In this section, we carry out linear analysis for the LDG and the penalty formulations in 1D. 
This linear analysis was first employed by Zhang and Shu  [28]  in the DG setting and later used by 
Kannan and Wang  [5,6,7,9]  for studying high order spatial derivatives (second and third). For a 
given CV averaged solution vector [ ]ju  (for the jth SV), linearity and periodicity of the system 
results in  

dt
d [ ju ] = A[ 2−ju ] + B[ 1−ju ] + C[ ju ] + D[ 1+ju ] + E[ 2+ju ],                       (4.1) 

where A, B, C, D and E are constant matrices. Consider the following Fourier mode  
ikx

k etutxu )(ˆ),( = ,                                                    (4.2) 
where k is the wave number and kû  is the amplitude of the given wave. The analytical solution for 

equation 3.1 is )( 3

),( tkkxietxu += . Using periodicity, the advancement equation can be written as  



A High Order Spectral Volume Method for  Equations Containing Third Spatial Derivatives  Using an Interior Penalty 
Formulation   

 

 79

[ ku′ˆ ]=G(k) [ kû ],                                              (4.3) 
where G is the amplification matrix and is given by   

      G = ikhe 2− A + ikhe− B + C + ikhe D + ikhe2 E.                           (4.4) 
The eigen values of G comprise of the physical (principal eigen value) mode and various 

spurious modes. The spurious modes are damped much faster than the physical mode (assuming 
that the scheme is stable). 

 
4.1. Second order spatial analysis 

 
The plot of the real component of the principal eigen value as a function of the  

non-dimensional frequency ( kh=ξ ) is shown in Figure 2a.   
 
 

 

Figure 2a. Real component of the principal 
eigen value as a function of ξ  for the second 
order SV. 

Figure 2b. Error associated with the imaginary 
component of the principal eigen value as a 
function of ξ for the second order SV. 

All the entries are less than or equal to zero. This implies that the system is stable. It can 
be seen that the penalty scheme generates smaller numerical dissipation than the LDG scheme. 
The deviation between the imaginary components of the principal eigen value and the analytical 
eigen value (i.e. 3ξi ) as a function ofξ  is plotted in Figure 2b. The penalty scheme is in general 
comparable the LDG scheme.  

A value of 2.0 was used for λ  (see equation 3.8). This value was chosen to enable a stable 
scheme as well as to reduce the dispersion error. 

 
4.2. Third order spatial analysis 

 
Following the notation of Kannan et al  [5,9],  the third order SV of unit length has its 

interior CV boundaries given by the following local coordinates: {0, d, 1-d, 1}, where d is the 
length of the first CV in the SV. A value of d=0.1 was deemed most accurate  [5,9].  This will be 
used in the remainder of the paper.  

The plot of the real component of the principal eigen value as a function of the  
non-dimensional frequency ( kh=ξ ) is shown in Figure 3a. A value of 11.12 was used for λ  
(see equation 3.8). This value was chosen to enable a stable scheme.  

The deviation between the imaginary components of the principal eigen value and the 
analytical eigen value (i.e. 3ξi ) as a function ofξ  is plotted in Figure 3b. The dissipation 



Raghavendra CFD Letters Vol. 3(2) 2011 

 80

properties of the LDG and the penalty are comparable. The penalty scheme generates much 
higher dispersion than the LDG scheme. A higher value of λ  mildly alleviates the dispersion 
errors, but increases the numerical dissipation. 
 

 
Figure 3a. Real component of the principal eigen 
value as a function of ξ  for the third order SV. 

Figure 3b. Error associated with the 
imaginary component of the principal eigen 
value as a function of ξ for the third order 
SV. 

 
4.3. Fourth order spatial analysis 

 
Once again, following the notation of Kannan et al  [5,9],  the fourth order SV of unit length 

has its interior CV boundaries given by the following local 
 coordinates: {0, d, 0.5, 1-d, 1}, where d is the length of the first CV in the SV. A value of d=0.1 
was deemed most accurate  [5,9].  This will be used in the remainder of the paper.  

The plot of the real component of the principal eigen value as a function of the ξ  is shown 
in Figure 4a. The system is stable, since all the entries are less than or equal to zero. It can be 
seen that the penalty scheme generates smaller numerical dissipation than the LDG scheme.  
 

 

 

Figure 4a. Real component of the principal eigen 
value as a function of ξ  for the fourth order SV. 

Figure 4b. Error associated with the 
imaginary component of the principal eigen 
value as a function of ξ for the fourth order 
SV. 
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The deviation between the imaginary components of the principal eigen value and the 
analytical eigen value (i.e. 3ξi ) as a function ofξ  is plotted in Figure 4b. The penalty scheme 
generates smaller dispersion errors than the LDG scheme. 

A value of 15.0 was used for λ  (see equation 3.8). This value was chosen to enable a 
stable scheme as well as to reduce the dispersion error. 

It must be noted that the Fourier analysis presented assumes plethora of assumptions, 
including linearity, periodicity and exact time integration. Even though, most of the problems 
are non-linear and have non-periodic boundary conditions, the Fourier analysis can be 
considered as a first estimate for ensuring stability (for example by varyingλ ) and justifying the 
obtained accuracies (for instance between the LDG and the penalty schemes). 

 
5.  Numerical experiments  
 

 In this section, the penalty formulation is demonstrated by means of numerical experiments. 
These are compared with the LDG simulations performed by Kannan et al  [9].  A three stage SSP 
Runge-kutta scheme was used for time advancement  [19].   

 
5.1. Test Case 1 

 
An accuracy test is carried out considering the approximate solution of the following 

equation  
0=+ xxxt uu ,                                                   (5.1) 

with an initial condition )sin()0,( xxu = and periodic boundary conditions over the interval [0, 
π2 ]. This equation has an analytical solution: )sin(),( txtxu += . A non-uniform mesh was 

used in this study. The mesh had a recurring pattern of SVs of lengths Δ9.0 and Δ1.1 ,where 
Δ was the length of the corresponding uniform SV. The simulation was performed till 

1=t second. The L2 and L∞ errors and orders of accuracies were computed at 1=t second and 
are given in table 1. The corresponding LDG results are also shown. It can be seen that the 2nd 
and the 4th order penalty simulations yield smaller errors than their LDG counterparts. As 
expected the error generated by the third order penalty is much higher than its LDG counterpart. 
In general, the simulations asymptotically attain the desired orders of accuracy.  

 
5.2. Test Case 2 

 
The second test case involved computing the solution of the non-linear KdV equation  [9]  

0)(3 2 =+− xxxxt uuu ,                                               (5.2) 
with an initial condition )(2)0,( 2 xsechxu −= over the interval [-10,12]. The boundary 
conditions are given by  

)(),10( 1 tgtu =− ,  )(),12( 2 tgtux = ,  )(),12( 3 tgtuxx = ,                   (5.3) 
where )(tgi is obtained from the analytical solution )4(2),( 2 txsechtxu −−= . 

The simulation was performed till 5.0=t second and the non-uniform mesh described the 
earlier test case was employed. The L2 and L∞ errors and orders of accuracies were computed at 

5.0=t second and are given in table 2. Once again, it can be seen that the 2nd and the 4th order 
penalty simulations yield smaller errors than their LDG counterparts and the error generated by 
the third order penalty is much higher than its LDG counterpart. The simulations asymptotically 
attain the desired orders of accuracy, in spite of the problem being heavily non-linear.  
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5.3. Test Case 3 
 

The third test case was designed to test the robustness and accuracy of the method for non-
linear problems with small coefficient for the third derivative term  [9]   

0)
4

(
4

=+++ xxxxxt uuuu ε ,                                              (5.4) 

with an initial condition ))(()0,( 0
3
2

xxKAsechxu −= , with 2275.0=A , 5.00 =x , 

5058.2 −= eε  and 2
13

)
40

(3
ε

AK = . The following boundary conditions were applied over the 

interval [-2:3]: 
)(),2( 1 tgtu =− ,  )(),3( 2 tgtux = ,  )(),3( 3 tgtuxx = ,                   (5.5) 

where )(tgi is obtained from the analytical solution : ))((),( 0
3
2

txxKAsechtxu ω−−= , where 

)
10

1(
3AK +=ω . 

The simulation was performed till 1=t second and the non-uniform mesh described the 
earlier test case was employed. The L2 and L∞ errors and orders of accuracies were computed at 

1=t second and are given in table 3. The observations are identical to that of the previous two 
test cases: the 2nd and the 4th order penalty simulations yield smaller errors than their LDG 
counterparts and the error generated by the third order penalty is much higher than its LDG 
counterpart.  

 
5.4. Test Case 4 

 
The fourth test case involves solving a KdV-Burgers equation, on highly non-uniform 

grids. The equation is given by: 

0)
2

(
2

=+−+ xxxxxxt uuuu βαε .                                              (5.6) 

The analytical solution is given by: )2)tanh(2)((
25
3),( 2

2

+−+−−−= ctkcctkxsechtxu
εβ
α , 

with 
β
α

10
=k , 2

3

125
3
β
α

=c .  

The mesh had a recurring pattern of SVs of lengths Δ5.0 and Δ5.1 ,where Δ was the 
length of the corresponding uniform SV. The following values were employed for this 
simulation: 1=== βαε . This test case has first, second and third derivative spatial fluxes, 
imbedded non-linearity and is solved on highly non-linear grids. Hence it is a good case to show 
the robustness and accuracy of the penalty scheme. 

The simulation was performed till 1=t second. Upwinding was employed for the first 
derivative spatial flux. A LDG formulation was employed for the second derivative flux. The L2 
and L∞ errors and orders of accuracies were computed at 1=t second and are given in table 4. 
Inspite of the heavy nonlinearity and interaction of the different fluxes, the overall observations 
are identical to that of the previous two test cases: the 2nd and the 4th order penalty simulations 
yield smaller errors than their LDG counterparts and the error generated by the third order 
penalty is much higher than its LDG counterpart.  
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TABLE 1. 0=+ xxxt uu . )sin()0,( xxu = . L2 AND L∞ ORDER AND ERRORS AT T=1. 
K Method Grid L2 error 

 
L2 order 

 
L∞ error 

 
L∞ order 

 
1 LDG 10 1.60e-2 - 5.83e-2 - 
  20 4.08e-3 1.97 1.56e-2 1.90 
  40 1.03e-3 1.99 3.96e-3 1.98 
  80 2.57e-4 2.00 9.97e-4 1.99 
       

1 Penalty 10 8.32e-3 - 3.15e-2 - 
  20 2.09e-3 1.99 8.15e-3 1.95 
  40 5.24e-4 2.00 2.05e-3 1.99 
  80 1.31e-4 2.00 5.13e-4 2.00 
       

2 LDG 10 8.81e-4 - 4.47e-3 - 
  20 1.12e-4 2.97 5.74e-4 2.96 
  40 1.41e-5 2.99 7.28e-5 2.98 
  80 1.77e-6 3.00 9.16e-6 2.99 
       

2 Penalty 10 2.73e-3 - 1.47e-2 - 
  20 5.90e-4 2.21 3.65e-3 2.01 
  40 1.06e-4 2.47 8.00e-4 2.19 
  80 1.55e-5 2.78 1.53e-4 2.39 
       

3 LDG 10 5.11e-5 - 2.41e-4 - 
  20 3.26e-6 3.97 1.55e-5 3.96 
  40 2.06e-7 3.98 9.81e-7 3.98 
  80 1.30e-8 3.99 6.22e-8 3.98 
       

3 Penalty 10 3.11e-5 - 1.57e-4 - 
  20 1.96e-6 3.99 9.88e-6 3.99 
  40 1.22e-7 4.00 6.17e-7 4.00 
  80 7.65e-9 4.00 3.86e-8 4.00 

 
TABLE 2. 0)(3 2 =+− xxxxt uuu . )(2)0,( 2 xsechxu −= . L2 AND L∞ ERRORS AT T=0.5. 

k Method Grid L2 error 
 

L2 order 
 

L∞ error 
 

L∞ order 
 

1 LDG 10 2.62e-1 - 1.46e-0 - 
  20 8.53e-2 1.62 6.01e-1 1.28 
  40 2.50e-2 1.77 2.20e-1 1.45 
  80 6.71e-3 1.90 7.11e-2 1.63 
  160 1.72e-3 1.96 2.08e-2 1.77 
  320 4.31e-4 2.00 5.47e-3 1.93 
       

1 Penalty 10 1.44e-1 - 8.61e-1 - 
  20 4.49e-2 1.68 3.28e-1 1.39 
  40 1.26e-2 1.83 1.09e-1 1.59 
  80 3.27e-3 1.95 3.33e-2 1.71 
  160 8.24e-4 1.99 9.44e-3 1.82 
  320 2.06e-4 2.00 2.39e-3 1.98 
       

2 LDG 10 1.09e-1 - 1.06e0 - 
  20 1.66e-2 2.71 1.65e-1 2.68 
  40 2.51e-3 2.73 2.81e-2 2.56 
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  80 3.43e-4 2.87 4.57e-3 2.62 
  160 4.41e-5 2.96 6.51e-4 2.81 
  320 5.51e-6 3.00 8.31e-5 2.97 
       

2 Penalty 10 3.59e-1 - 3.89e-0 - 
  20 6.94e-2 2.37 8.41e-1 2.21 
  40 1.15e-2 2.59 1.63e-1 2.37 
  80 1.70e-3 2.76 2.86e-2 2.51 
  160 2.41e-4 2.82 4.30e-3 2.73 
  320 3.16e-5 2.93 5.73e-4 2.91 
       

3 LDG 10 4.99e-2 - 4.09e-1 - 
  20 5.18e-3 3.27 4.83e-2 3.08 
  40 4.77e-4 3.44 4.81e-3 3.33 
  80 3.45e-5 3.79 4.34e-4 3.47 
  160 2.25e-6 3.94 3.20e-5 3.76 
  320 1.42e-7 3.98 2.04e-6 3.97 
       

3 Penalty 10 3.29e-2 - 2.53e-1 - 
  20 3.12e-3 3.40 2.79e-2 3.18 
  40 2.70e-4 3.53 2.63e-3 3.41 
  80 1.91e-5 3.82 2.12e-4 3.63 
  160 1.25e-6 3.93 1.44e-5 3.88 
  320 7.89e-8 3.99 9.13e-7 3.98 

 

TABLE 3. 0)
4

(
4

=+++ xxxxxt uuuu ε . ))(()0,( 0
3
2

xxKAsechxu −= . L2 AND L∞ ERRORS AT T=1. 

k Method Grid L2 error 
 

L2 order 
 

L∞ error 
 

L∞ order 
 

1 LDG 10 4.45e-2 - 4.15e-1 - 
  20 1.74e-2 1.35 1.74e-1 1.25 
  40 6.17e-3 1.50 6.99e-2 1.32 
  80 1.90e-3 1.70 2.56e-2 1.45 
  160 5.38e-4 1.82 8.56e-3 1.58 
  320 1.38e-4 1.96 2.44e-3 1.81 
  640 3.46e-5 2.00 6.23e-4 1.97 
       

1 Penalty 10 2.00e-2 - 2.03e-1 - 
  20 7.37e-3 1.44 8.18e-2 1.31 
  40 2.38e-3 1.63 3.06e-2 1.42 
  80 6.61e-4 1.85 1.01e-2 1.60 
  160 1.70e-4 1.96 2.96e-3 1.77 
  320 4.27e-5 1.99 7.87e-4 1.91 
  640 1.07e-5 2.00 2.00e-4 1.98 
       

2 LDG 10 2.53e-2 - 2.09e-1 - 
  20 4.61e-3 2.46 4.32e-2 2.28 
  40 9.17e-4 2.33 9.27e-3 2.22 
  80 1.77e-4 2.37 1.84e-3 2.33 
  160 2.69e-5 2.72 3.32e-4 2.47 
  320 3.51e-6 2.94 4.77e-5 2.80 
  640 4.45e-7 2.98 6.10e-6 2.97 
       

2 Penalty 10 6.83e-2 - 4.59e-1 - 
  20 1.40e-2 2.29 1.05e-1 2.13 
  40 2.73e-3 2.35 2.23e-2 2.23 
  80 4.91e-4 2.48 4.38e-3 2.35 
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  160 7.45e-5 2.72 7.38e-4 2.57 
  320 9.91e-6 2.91 1.07e-4 2.78 
  640 1.26e-6 2.97 1.39e-5 2.95 
       

3 LDG 10 2.09e-2 - 1.85e-1 - 
  20 2.57e-3 3.03 2.85e-2 2.70 
  40 2.37e-4 3.44 3.64e-3 2.97 
  80 1.76e-5 3.75 3.70e-4 3.30 
  160 1.18e-6 3.90 2.83e-5 3.71 
  320 7.47e-8 3.98 1.92e-6 3.88 
  640 4.67e-9 4.00 1.21e-7 3.99 
       

3 Penalty 10 1.15e-2 - 9.44e-2 - 
  20 1.23e-3 3.23 1.22e-2 2.95 
  40 1.02e-4 3.59 1.36e-3 3.17 
  80 7.31e-6 3.80 1.12e-4 3.59 
  160 4.73e-7 3.95 8.09e-6 3.80 
  320 2.99e-8 3.99 5.20e-7 3.96 
  640 1.86e-9 4.00 3.27e-8 3.99 

 

TABLE 4. 0)
2

(
2

=+−+ xxxxxxt uuuu βαε . )2)tanh(2)((
25
3)0,( 2

2

++−−= kckxsechxu
εβ
α

. L2 

AND L∞ ERRORS AT T=1. 
k Method Grid L2 error 

 
L2 order 

 
L∞ error 

 
L∞ order 

 
1 LDG 40 2.11e-3 - 3.26e-2 - 
  80 7.21e-4 1.55 1.28e-2 1.35 
  160 2.10e-4 1.78 3.99e-3 1.68 
  320 5.47e-5 1.94 1.06e-3 1.91 
       

1 Penalty 40 1.28e-3 - 1.76e-2 - 
  80 4.02e-4 1.67 6.18e-3 1.51 
  160 1.07e-4 1.91 1.75e-3 1.82 
  320 2.65e-5 1.99 4.56e-4 1.94 
       

2 LDG 40 3.22e-4 - 5.44e-3 - 
  80 5.50e-5 2.55 1.09e-3 2.32 
  160 8.40e-6 2.71 1.74e-4 2.65 
  320 1.10e-6 2.93 2.36e-5 2.88 
       

2 Penalty 40 6.11e-4 - 1.11e-2 - 
  80 1.23e-4 2.31 2.57e-3 2.11 
  160 2.13e-5 2.53 4.97e-4 2.37 
  320 3.13e-6 2.77 7.71e-5 2.69 
       

3 LDG 40 5.11e-5 - 7.89e-4 - 
  80 5.45e-6 3.23 9.67e-5 3.03 
  160 4.37e-7 3.64 8.72e-6 3.47 
  320 2.79e-8 3.97 5.80e-7 3.91 
       

3 Penalty 40 4.05e-5 - 5.11e-4 - 
  80 4.14e-6 3.29 5.80e-5 3.14 
  160 2.99e-7 3.79 4.60e-6 3.66 
  320 1.88e-8 3.99 2.92e-7 3.97 
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6. Conclusion 
 

An interior penalty formulation was implemented for solving equations containing third 
spatial derivative terms in a spectral volume context. This is different from the existing LDG 
formulation, wherein the fluxes are obtained by alternating the left and right state values. This 
makes the penalty formulation definitely symmetrical (This is similar to Kannan and Wang’s 
symmetrical penalty formulation for second derivative terms  [5]).  The magnitude of the required 
penalizing term was determined using a linear Fourier analysis, at the stability limit. The dispersion 
and the dissipation properties of this new formulation and the existing LDG formulation were 
studied using the linear Fourier analysis. The analysis showed that the new formulation is more 
accurate than the LDG formulation for the second and fourth order simulations (i.e. linear and cubic 
partitions). The high dispersion error present in the third order (quadratic partition) interior penalty 
formulation, results in the LDG being a better choice for third order simulations. 

Numerical experiments were performed to assess the new formulation. The observations from 
these experiments were in accord with those of the analyses: the 2nd and the 4th order penalty 
simulations yield smaller errors than their LDG counterparts and the error generated by the third 
order penalty is much higher than its LDG counterpart. Both the linear and the non-linear equations 
attained the expected orders of accuracy asymptotically. 

Kannan and Wang were able to improve their LDG results using LDG2  [13],  an intelligently 
formulated variant of the LDG method. The LDG2 uses a combination of one sided derivatives and 
central derivatives. This idea can also be used in the penalty formulation: using a combination of 
the existing penalty and a central flux. Rigorous testing of the above is underway and will be 
reported in future publications.  

Other future work will include extension to fourth and fifth order spatial derivative terms, 
extension to 2D problems and implementing the extremely efficient implicit time discretization 
procedures developed by Liang et al  [15].  
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