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Abstract 

 
It is well known that in a turbulent flow between two parallel flat plates, the horizontal 
mean velocity varies logarithmically with height (the so-called 'logarithmic-law-of-the-
wall'). The law of the wall is a description of the mean velocity profile in wall bounded 
flows and has been regarded as one of the underpinning doctrine in the turbulence 
community for more than half a century. Much of our understanding in wall turbulence 
has been based from the continuum Navier-Stokes Equation (NSE). More recently, 
following studies of a modified Navier Stokes Equation, we applied a modified 
incompressible NSE to the flow of turbulent fluid between two parallel flat plates and 
solved it analytically [1]. We extended the analysis to the turbulent flow along a single 
wall and compared the results with the established controversial von Karman logarithmic 
law of the wall [2]. We found velocity profiles and velocity time evolution of a turbulent 
system, through simple numerical simulations, that cannot be reproduced from the 
classical NSE  
 
Keywords: post-Navier Stokes equation; law of the wall; analytical solution; numerical 
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1. Introduction 
 

For more than a hundred years, fluid turbulence has been has been one of the greatest 
mysteries of science. It has been an age-old topic of discussion among fluid dynamicists. 
Turbulence, as a state of fluid motion, has been understood before as something that is governed by 
dynamical laws such as the Navier-Stokes equation. Most fluid dynamicists agree that not only the 
problem of turbulence is still far from being solved, but also it is extremely difficult to agree on 
what is the problem to be solved [3]. 

The traditional method in standard hydrodynamics is to solve Navier- Stokes equation for 
stationary velocity profiles, which are parabolic for Poisseuille-Hagen flow in laminar regime and 
in good agreement with experiments. However, any agreement breaks down at the onset of 
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turbulence as velocity profiles flatten and become non-stationary [4-5]. An explanation for the 
flattened velocity profiles was given by Prandtl and von Karman using the transverse component of 
the fluctuation of the velocity [5]. The faster molecules of the central region of the pipe show up in 
the boundary layer mix with slower molecules, and the velocity profile becomes roughly uniform 
except in the boundary layers. 

For the description of turbulent flows, many renormalized perturbation theories all based on 
Reynolds equation were developed in the past [6]. The Reynolds equation, which aside from the 
mean velocity considers its arbitrary time fluctuations, like Navier-Stokes equation, ignores the 
structure of the molecules. Limitations of the Reynolds equation in the laminar-turbulent transition 
and its difficulty in explaining the origin of turbulence suggest study of the phenomenon directly 
from the Liouville equation. 

It is known that difficulties arise when turbulence is studied from the standard Navier-Stokes 
equation alone. That was first observed by D. Ruelle [7]. One such recent effort modifies the Navier 
Stokes equation by a term resulting from a microscopic molecular consideration ignored by 
conventional hydrodynamics [1]. A quantum kick imparts a constant unit of momentum with certain 
probability per unit time to the molecules of the gas. This is a way of injecting energy into a system 
to see if turbulence results.  

The law of the wall for the interior part of a wall-bounded turbulent shear flow is the 
cornerstone of fluid dynamics, and one of the very few pieces of turbulence theory whose outcome 
includes a simple analytic function for the mean velocity distribution, the logarithmic law. For wall-
bounded flows, the so-called 'log law' is widely held to describe most turbulent wall-bounded flows, 
and lies at the heart of the most commonly used engineering computational models concerning 
turbulent flow in close proximity to surfaces. While there are several forms of the log law, the most 

common is the mean velocity profile normalized in variables given by 1 ln iU y
K

B    where 

*/U U u   and * /y yu v  . U is the mean velocity, y is the distance from the wall, v  is kinematic 
viscosity and *u  is the friction velocity defined from the wall skin friction, W , as 2

* /Wu    
where  is the fluid density. The von Karman constant, K , and the additive constant iB  is widely 
thought to be universal constants. However, there seems to be little consensus on the values of these 
constants. For several decades, K  was believed to be 0.41, but a few years ago Nagib estimated it 
to be 0.38 and K  can be as high as 0.45 [9].  

The history and theory supporting the universality of the log law for turbulent wall-bounded 
flows was examined by W. George. George articulated that the idea of a universal log law for wall-
bounded flows is not supported either the theory or the data [9]. Several modifications of the log 
law of the wall for turbulent flow in smooth pipes are proposed already which are based from 
empirical data, one being a law consisting of three terms: a logarithmic term, a sine-square term and 
a cubic term [10]. Virtually most turbulence models are calibrated to reproduce the law of the wall 
in simple flows, such that when the law of the wall fails, current Reynolds-averaged turbulence 
models are not susceptible to failure [11]. 

Not long ago, attempts were made by several researchers such as Chorin and Barenblatt to 
describe the turbulent flow along a single plate by a power law [12]. They proposed that the 
velocity profile is not universal but a weakly varying power law with coefficients that vary with 
Reynolds Number, in general, of the form U Cy where C  and  are Reynolds number dependent 
empirical constants, while von Karman log law is Reynolds number independent and is a good 
approximation for distances far enough from the wall only, the so called intermediate or overlap 
region. It fails in the regions near the wall, (viscous and buffer sublayers), and for very large 
distances from the wall. In the region near the wall, the viscous sublayer, the power law holds 
approximately for 1  , (linear dependency). Their analysis of the new experimental data adduces 
additional arguments against the von Karman-Prandtl universal logarithmic law and in favor of a 
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specific power law. However, measurements done by Zanoun and Durst for high Reynolds numbers 
support the approximate validity of the log law in the intermediate or overlap region (inertial 
sublayer) [13].   

This paper will present the equations derived from the modified Navier Stokes Equation 
which will be compared with known flow characteristics. We have applied flat plate boundary 
conditions to generate the respective velocity fields and corresponding velocity time evolution. The 
generated velocity profiles in the flat plate geometry will be explored and compared with 
experimental data. All of the flows we considered in these studies will be assumed to have 
undergone transition and is fully developed. The treatment of the equations will be paying attention 
entirely on smooth walls for which surface roughness have no quantifiable influence. The model 
reproduced the velocity profiles of turbulent flow between two flat plates. Extending the analysis to 
the flow along a single wall by letting the distance between two flat plates to go to infinity, we 
arrive at a result qualitatively similar to known results, nevertheless fundamentally different from 
the logarithmic law known to have discrepancies with empirical data by even 65% [2].  
 
2. Application to a Flat-Plate System 

 
We postulate a modified Navier-Stokes equation for the macroscopic velocity U


of the form  

 

 1i
j j i i j ij

U U U U P
x m




 
      


 ; , 1, 2,3i j     (1) 

where the last term of both sides of the equation are adopted from [1] to represent quantized kicks 
to the system, with   as the probability per unit time that a particle of mass m is imparted a 
momentum kick . It can be interpreted as forcing by a paddle wheel which increases the velocity 
of a particle in a fluid. This is no longer a purely continuum model. We shall justify this ad-hoc 
approach from the apparent success of the model in explaining empirical data heretofore 
unexplained by continuum mechanics [4, 14]. All other terms follow conventional definitions. The 
justification of the strange terms appearing in the Equation 1 comes, besides its utility, as a result of 
inelastic interactions among the molecules of the fluid. Thus the contribution from the collision 
integral in Boltzmann transport equation used in their derivation does not reduce to zero unlike in 
the derivation of standard incompressible NS equation. From the hypothesis about the quantum 
nature of turbulence, dissipative effects are present from excitation to higher energy state of the 
particles due to inelastic collisions. It is well known that inelastic interactions among the molecules 
of the fluid result in deterministic chaos we associate with turbulence. 

If one uses a decomposition of the pressure tensor ijP into its diagonal and off-diagonal 
parts, , , 1, 2,3ij ijp i j   , where p  is the pressure and ( )ij i j j iU U    is the component of 
shear stress tensor and applying incompressible fluid condition 0j jU  , Equation 1 simplifies to 

21 ( )i
j j i i i j i

U U U U p U
t m

 


 
        


   (2) 

where   is the kinematic viscosity. For the flat plates configuration the mean velocity vector is 
 ( , ,0,0)U U z t


 and we can further reduce it to Equation 3. 

2

2

U UkU g
t z



 

  
 

      (3) 

The parameter k 


  is proportional to the probability of kicking particles to different momentum 

and 1
x

kg p
m


     represents the constant effective pressure head per unit kinematic viscosity 

that drives the motion of the fluid. The solutions to the Equation 3 did not require numerical 
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computations since it is easily solved analytically upon application of the necessary flow conditions. 
All plots were generated by substituting parameter values on the governing equation and adjusting 
the scaling of the plots to match with widely known flow profiles.  

 
3. Results and discussion 
 

3.1   New Law of the Wall  
 

We find the stationary solution of Equation 3 using non-slip boundary conditions, 
   0, , 0U t U L t   and static initial condition,  ,0 0U z   and subject to flat plate 

boundary conditions,  0 ( )U U L , with plates at a distance L  apart, 

   sinh sinh
1 , 0

sinh
k z L k zgU z k

k k L

  
    

 
   (4) 

The results for the flat plate system are plotted in figure 1. Fixed parameters used for the 
numeric computations are: 100g  and 1L  . For the numerical results for the two-plate 
system, it exhibits broad flattening of the velocity profiles, for large k  values, for example 
with probability parameter 250k  . It can be observed that for increasing k  values, the 
velocity profile looks more like the predicted logarithmic curve from empirical studies. On 
the other hand, velocity profiles for lower values of the control parameter k  are nearly 
parabolic or circular which are usually associated with laminar fluid flow. The flattening of 
the velocity profiles can be simply explained by increase in number of inelastic molecular 
interactions. With increased inelastic collisions, velocity profile exhibits flattening at the 
center which is characteristic of turbulence.  

The velocity profile of the flow along a single flat plate, 0z  , can be obtained simply 
by letting the distance, L , approach infinity. Then for the mean velocity of the flow we get  
 

   sinh sinh
lim 1

sinhw L

k z L k zgU z
k k L

  
  

  
   (5)        

   1 expw
gU z k z
k
           (6) 

The result for the wall turbulence for a single wall flow is plotted in Figure 2, with 
the same parameters, except L  . For small distances z  from the wall (boundary viscous 
sublayer), the exponential velocity profile reduces approximately to linear in good 
agreement with observations. The exponential description of the velocity profile deviates 
from the logarithmic law for small distances z , and is somehow consistent with an 
exponential profile derived using a field theoretical method in [8].  

   
3.2   Velocity Time Evolution  

A complete non-stationary solution of equation 3, the time development of the velocity 
profiles, can be found. If one writes a solution of equation 3 with 0g   as 

   1
G

vktu Aexp By z


 
   

 
 and another in the form    2

G
vktu Cexp y z


 
  

 
 where A , B  

and C  are constants to be determined. The solution of Equation 3 for 0g  , satisfying 

static and non-slip boundary conditions can be constructed as,      1 2, G G
gU z t u u
k

   . With 
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  sinh sinh ( )
sinh

k z k z Ly z
k L

  
   
 

 and constants gA B C
k

      the time evolution of 

the profile is,  
 

   , 1 exp ( ) expg vkt g vktU z t y z y z
k k 
    

         
    

   (7) 

 

The exponential term exp vkt


 
 
 

 can be neglected as t  , for equation 7 to 

simplify into the equation 4 form. The same fixed parameters were used for the velocity 
profile progression plots in figure 3. It shows how the velocity profile approaches that for 
equation 4 for increasing t  values.  

 

  

  

  

Figure 1. Stationary velocity profiles for turbulent flow between two flat-plates for 
1,50,100,150, 200, 250k  . 
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Figure 2. Wall Turbulence in a single plate for 1,50,100,150, 200, 250k  . 
  

 
Figure 3. Velocity time evolution for turbulent flow in a two-plate system for various t  values 
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 3.3   Model fitness with experimental data 
 

        In Figure 4, we compared the fit of our equation with experimental data at low 
Reynolds numbers for turbulent flow in flat plates [16]. The exact data points used by Shiyi 
Chen et al. to validate the results of their viscous Camassa-Holm equations as a closure 
approximation for the Reynolds averaged equations of the incompressible Navier-Stokes 
fluid [15]. The velocity profile was plotted as well for the von Karman log law predictions 
using 0.41 and 5.5 for the von Karman constant and the additive constant, respectively [13].  

 
Figure 4. Mean Velocity Profile in the Channel for the new Law of the Wall and von 
Karman log law compared with the experimental data. 

 
As the Reynolds numbers for these experiments are small, g , k , and L  somehow 

have not reached their theoretical asymptotic values. Our new law of the wall used the 
abovementioned adjustable parameters for the fitting. We obtained the best data fit for the 
experimental data when we assumed that the probability parameter k is slowly changing 
with the wall distance z . By definition, k is proportional to the probability of kicking 
particles to different momentum. Hence, k can be a function of the wall distance due to the 
varying levels of turbulence along the wall. As seen in Figs. 1 and 2, the shape of the profile 
is greatly affected by the parameters k  and g  which for the optimized fitting were found to 
be   0.0001 0.000046k z z   and 0.00522g  . Parameter L  has minimal effect on the 
velocity curves for values greater than 1000. This assumption is justified since it is well 
established that the fluid is more turbulent near the wall. To provide proper scaling of the 
experimental data, g has been chose to have a small value. It is also known that the von 
Karman log law fails in the regions near and far from the wall. The new exponential curve 
on the other hand explains the linear behaviour near the wall. As predicted from our 
equation, at the region very near the wall, equation 6 simplifies to a linear form, 

/wU gz k . We emphasize here that our predictions are consistent with the von Karman 
and experimental data at a wide range of distances from the wall, as seen in Figure 4. 

 
4. Conclusion 
 

In the present paper, a new theory of the law of the wall, regarding the nature of wall-bounded 
flow turbulence, is outlined in brief. In particular, the the analytical solutions of the modified NSE 
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in stationary and non-stationary conditions and the validity of the law derived is focused upon. A 
self-consistent theoretical formulation for the law is derived which matches the experimental data at 
the log layer. Upon examination of the resulting velocity profiles in a fully developed two-plate 
system flows indicates that it can be used to model channel flows.  The present observations 
emphasize that the above results cannot be obtained from the classical NSE.  

Further data must be used to test the new law of the wall equation developed from the modified 
NSE especially the data from the measurements done on the turbulent velocity profiles in channel 
and circular pipe flows for a wide range of Reynolds numbers. To get the solution of the Equation 3 
in cylindrical coordinates it suffice to replace in flat plate non-stationary solution the hyperbolic 
sine functions by first modified Bessel function 0I . Qualitatively, similar result was obtained and 
tested against experimental data by Chen et al. [15]. Their rather complicated result for wall 
turbulence velocity profiles was in terms of hyperbolic cosine functions and some power law terms 
obtained from a closure of Reynolds-averaged equation (Camass Holm equations). For the turbulent 
pipe flow the cosh functions could be just replaced by first modified Bessel functions in agreement 
with our result except the power law terms [17]. We presented a more simple result. Also, the 
fundamental assumption requires further investigations, both experimentally and theoretically, i.e. 
on basis of the quantum nature of turbulence.  
 
Acknowledgement  
 

We acknowledge the assistance of the Balik-Scientist Program of the Department of Science 
and Technology (DOST), Republic of the Philippines, DOST-UP ERDT Faculty Development 
Program, and the Department of Chemical Engineering at the University of the Philippines Diliman.  
 
Nomenclature 
 
U     Mean velocity 
v     Kinematic viscosity 

*u    Friction velocity 

W     Wall skin friction 
      Fluid density 
K     von Karman constant 

iB     Additive constant in the von Karman logarithmic law 
     Coefficient in Chorin and Barenblatt power law 
    Probability per unit time that a particle of mass m is imparted a momentum 
   kick  
     Momentum kick 

ijP     Pressure tensor 

ij     Components of the shear stress 
g     Constant effective pressure head per unit kinematic viscosity that drives the 
   motion of the fluid 
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