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Abstract 
 

In this paper, a Lagrangian–Lagrangian numerical simulation method for transient 
hydrodynamics of solid particles in an enclosure is presented. In this numerical scheme, we 
solve the fluid phase using a mesoscale method of lattice Boltzmann scheme. The particle 
motion is governed by Newton's law thus following the Lagrangian approach. The 
dynamics of solid particles in a lid-driven cavity was investigated at a wide range of 
Reynolds numbers. The results of this study suggest that the particle trajectories are 
critically dependent on the magnitude of Reynolds Numbers and the vortex behavior in the 
cavity. Comparisons with other previous studies demonstrate the application diversity of the 
present scheme. 
 
Keywords: Fluid-solid interaction, Lattice Boltzmann method, Lid-driven cavity, Solid 
particles   

 
 

1.  Introduction 
 

The phenomenon of multiphase flow can be seen not only in daily life situations but also in 
almost all engineering applications. The importance in understanding this problem results in many 
technical papers appearing in recent years discussing its impact on engineering. Because of the vast 
applications of the solid- liquid interaction in the industrial field, the progressing research in this 
area seems obligatory. Interestingly, this type of multiphase fluid flow plays an important role in the 
seeds drying technology, separation of grains, productions of milk powder, fluidized beds, coal 
combustion and many others.  

It is believed that the main reason of lack of understanding on the fluid-solid interaction 
phenomenon is the complicated nature of the problem. The size of solid particles can be as big as 
grain seeds or as tiny as dust pollutants. Until the present day, most researchers rely on the 
computational, rather than the experimental approach to study the behavior of these particles in 
fluid flow. To the best of authors’ knowledge, only Tsorng et al. [1] reported detailed experimental 
results on the behavior of solid particles in lid-driven cavity flow from micro to macro size of 
particles. Other experimental works are Adrian [2], Han et al. [3], Matas et al. [4], Ushijima and 
Tanaka [5], Ide and Ghil [6], Hu [7], Liao [8], etc.. However, according to these papers, high 
accurate laser equipments together with high-speed digital image capturing, and data interpretation 
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systems are required to obtain reliable experimental data. These high costs experimental devices 
will not be affordable if not supported by the research fund. However, the attitudes on solid–liquid 
systems have changed in the meantime, in parallel with the advancement in the global interests and 
technologies.  

As an alternative approach, many researchers considered fully computational scheme in their 
investigations [9-11]. Kosinski et al. [12,13] provides a wide range of numerical results on this 
subject. From the behavior of one particle in a lid-driven cavity flow to thousands of particles in 
expansion horizontal pipe has been studied in their research works sheds new hope in understanding 
this problem. Kosinski et al. applied the combination of the continuum Navier-Stokes equations to 
predict fluid flow and the second Newton’s law for solid particle flow. Their model predicts 
excellent results when compared to the experimental results, however, the complicated nature of 
Navier-Stokes equations demands high computational time in resolving fluid part. In contrast, 
particulate nature and local dynamics of Lattice Boltzmann Method (LBM) [14,15] make it a 
suitable tool for fluid-solid interaction prediction. 

The LBM adopts the kinetic theory of gases, which considers the evolution of fluid based on 
the behaviour at molecular level [16,17].Accordingly, the LBM resolves the macroscale of fluid 
flow indirectly by solving the evolution equation of particle distribution function and models the 
propagation and collision of particle distribution, which are believed to be the fundamental 
behaviours at molecular level [18]. From this similarity between the mechanisms of the LBM and 
the behaviour of solid particles, it is considered that the LBM is the best choice to couple with the 
second Newton’s law for the prediction of fluid-solid interaction. The emphasis is on the integration 
of the meso-scale of the LBM and the macro-scale of physical conditions. Other numerical issues 
related to the fluid solid simulation are also highlighted. There are some valuable LBM studies 
related to the solid fluid suspensions. Some interesting applications in treatment of fluid- particle 
interaction areas were carried out by Ladd [32,33] and Behrend [34]. In the model of Ladd , an 
approximation used to simulate the particles moving boundaries, and the distribution function fi is 
defined for grid points inside and outside the particle. In the suspensions of macroscopic particles 
(i.e. larger than 10µm), where the viscous forces alone are important, the fluctuation is ignored in 
lattice Boltzmann method.  The particles fluctuation effects also were studied in Brownian motion 
by Ladd [35] and Duffty and Ernst [36]. Close quantitative agreement is found between 
experiments and the mentioned studies results. Therefore, the objectives of this study are coupling 
the techniques of the LBM formulation and solid particle dynamics (Lagrangian-Lagrangian), to 
enhance our fundamental physical understanding of fluid-solid interaction for two phase flow 
problems on a generic level.  

 
2. Mathematical Modelling 
 

2.1. The Lattice Boltzmann Method 
Recently, there are a lot of researches applying the Lattice Boltzmann Method (LBM) to 

study various types of fluid flow problems [19-22]. They have demonstrated that the LBM is a 
powerful numerical tool in solving fluid flow parameters. The LBM originates from the kinetic 
Boltzmann equation derived by Ludwig Boltzmann (1844-1906) in 1988. It considers a fluid as 
an ensemble of artificial particles and explores the mesoscopic features of the fluid by using the 
propagation and collision effects among these particles. The LBM discretizes the whole flow 
region into a number of grids and numerically solves the simplified Boltzmann equation on the 
regular lattices [23]. The solution of the lattice Boltzmann equation converges to the Navier-
Stokes solution in continuum limit up to second order accuracy in space and time [24]. This 
method bridges the gap between the mesoscopic world and the macroscopic phenomena. The 
LBM has emerged as a versatile numerical method for simulating various types of fluid flow 
problems including turbulent [25], multiphase [26], magnetohydrodynamics [27], flow in 
porous media [28], microchannel flow [29], etc. 
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The starting point for lattice Boltzmann simulations are the evolution equation of particle 
distribution function f which can be written as  

   


eq
ii

iii
fftftttf 

 ,, xcx    
(1)      

where, f i
eq  is the equilibrium distribution function. c i is the lattice velocity and i is the lattice 

direction,  t is the time interval,  is the relaxation time of the particle distribution function, 
respectively. The magnitude of c i is set up In the LBM. So in each time step t, the distribution 
function propagates in a distance of lattice nodes spacing x. This ensures that the distribution 
function arrives exactly at the lattice nodes after t and collides simultaneously. The 
macroscopic variables such as the density , fluid velocity u and temperature T can be 
computed in terms of the particle distribution function as 

  fdc ,  u  cfdc   (2) 

To simulate the fluid flow in a system, one often uses the D2Q9 model [30] with nine 
velocities assigned on a two-dimensional square lattice. These velocities include eight moving 
velocities along the links connecting the lattice nodes of the square lattice and a zero velocity 
for the rest particle. The rest particles are defined by the distribution functions f0, the particles 
moving in the orthogonal direction by the function fi (i = 1,2,3,4) and the particles moving in the 
diagonal directions by the function fi (i = 5,6,7,8). The equilibrium distribution functions f i

eq  
are given as 

f i
eq   i 1 3ci u 4.5 ci  u 2 1.5u2   (3) 

where ω is the weight function and depends on the direction of the lattice velocity. 
Through the multiscaling expansion, the mass and momentum equations can be derived for 

the D2Q9 model of the evolution equation of the density distribution function. Detailed 
derivation can be found in [31]. 

2.2. The flow of the particles 
Numerical simulations of flow in monodisperse and bidisperse systems were studied by 

many researchers [37, 38]. The influence of the particle volume fraction and Reynolds numbers 
on the drag forces attracts attention in the presence of neighbouring particles in multi particles 
systems. Due to the results of these researches it should be noted that the correction of the drag 
forces is an important fact in multi particles systems, especially in dense suspension.  In the first 
step of this investigation, we only consider one particle in a lid driven cavity and assume that 
the presence of solid particles has no effect on the fluid flow.  The equation of motion for solid 
particles can be written as 

mp

dv p

dt
 fp  

 (4) 

where pm , pv  and pf  are the mass of particle, its velocity and drag force acting on particle due 
to surrounding fluid. According to Kosinski et al, the drag force can be written due to 
fundamental formula as follows 

fp  CD Ap
u vp u v p 

2
  

(5) 

where Ap  is the projected area of solid particle in flow direction and CD is the drag coefficient 
which is defined as 
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where Rep  is the Reynolds Number of solid particle. 
In the second part we add 2000 particles by the diameters of 0.0005(m) inside the cavity 

which means the total packing fraction of less than 0.1, and the size of the particles are smaller than 
lattice unit. Therefore, the drag force correlation is not highly important and we can use the above 
formula for getting enough accurate results for multi particle’s simulation. However, for the denser 
suspension, drag forces correction due to Beestra et al.[38] research is suggested. 

Moreover, in the present analysis, since we are coupling the macroscopic unit for the solid 
particle and mesoscopic unit for lattice Boltzmann formulation, it is crucial to understand the 
relationship between these two different scales of units. Consider a solid particle in a system of 
fluid as shown above, the Reynolds Number of the particle must be set the same both in the lattice 
Boltzmann formulation and actual physical flow, that is, 

Rep 
uLdL

 L


urdr

 r

 (7) 

Here, the subscripts L and r denote the variables in lattice units and physical units, 
respectively.  Hence, the actual time must be converted from lattice time tL  to physical time tr  as 
follows: 

tr 
dr

dL











2
 L

 r









tL  (8) 

 
3. Numerical Results 

 
The code was first validated against other numerical solutions by comparing the trajectory of 

a particle with the surrounding fluid. In present study, the density of particle supposed to be same as 
the fluid so the particles assume buoyant and the buoyancy force is neglected. The main and 
noticeable force is counted in this research is the drag force which is acting on particles. For the 
simulation, the top lid is constantly moved. The data setting of Tsorng et al.[1] which assumed as 
the verification case of kosinski’s et al.[13]. Research consisted of a cavity with side 10 cm, filled 
with a fluid of viscosity 37.2. The top lid is moving with a speed 17.5 cm/s. so that the resultant 
Reynolds Number is 470. 

It is necessary to mention that the above value should be converted to lattice unit. By the help 
of real plan viscosity the time step and size step should be calculated for a suitable relaxation time 
in lattice Boltzmann method. 

Figure 1 shows the comparison between the simulated particle’s trajectory by the current 
Lagrangian-Lagrangian approach and the Eulerian-Lagrangian solution and the experimental result 
at the steady state position. As can be seen from the figure, except for a short interval of time 
around the starting point, the predicted orbits are quite similar in three methods. 
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Figure 1. Comparison of particle’s trajectory computed from current approach (left) and Eulerian-
Eulerian scheme [13] (middle) and the experimental results of Tsorng et al. [1] (right) for Re = 470. 

 
In the next calculations, the top lid velocity varied, which results in Reynolds Numbers 100 to 

3200 but all the physical character such as fluid viscosity and particle density and size of cavity 
keep constant. Figure 2 shows the trajectory of a solid particle suspended in a square cavity. As can 
be seen from the figures, at low Reynolds Number (Re = 100), a vortex was formed near the top 
sliding wall and as the time evolved, it immediately moved downward into the cavity. However, 
this weak vortex was unable to drag the particle into it. As a result, the particle only spirals 
outwards of the centre of the cavity. However, for the simulation at higher Reynolds Number (Re = 
1000 and 3200), a stronger vortex was initially developed below the top lid and then propagates to 
the right corner of the cavity together with the solid particle. As the vortex grows in size and 
strength, it trapped the particle and moved to the center of the cavity. This forced the particle to 
make few small spirals near the upper right of the cavity and then gradually spiral outwards as it 
was dragged by the vortex to the center of the cavity.   

 

   
(a) (b) (c) 

 

Figure 2. Particle’s trajectory for (a) Re = 100, (b) Re = 1000 and (c) Re = 3200. 
 
Lastly, calculations were done to predict the dynamics of particles in a lid-driven cavity at 

Reynolds Numbers of 10, 400 and 1000. Two thousand particles were randomly located in the 
cavity in the range of 0.25 to 0.75 in both x and y direction. 

The snapshots of the transient hydrodynamics of particles are shown in Fig. 3. Surprisingly, 
the particles in the cavity with the lowest Reynolds number in the present study started to move 
earlier than those in the higher values of Reynolds Numbers. This can be explained by analysing the 
behaviour of the main vortex in the cavity for each Reynolds Number. For Re = 10, the main vortex 
immediately moves to the centre of the cavity and drags the particles into it. However, for the 
higher Reynolds Numbers, the main vortex initially moves to the right corner of the cavity before 
propagating to the centre where the particles are located. Then, the rotating fluid drags the particles 
into motion and is responsible for the drift of the particles.  
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The vortex strength also influences the dynamic behaviour of the particles. At low Reynolds 
Number (Re = 10), a weak vortex is formed and a gradual gradient of flow velocity from the vortex 
centre to the moving lid takes place. This makes the particles move in a bigger group along the flow 
streamline compared to the condition at high Reynolds Numbers. However, due to a comparatively 
weak vortex for Re = 10, the particles took longer time to circulate in the cavity compared to the 
predictions at Re = 400 and Re = 1000.   

For all cases, due to the high inertia force acting on the moving particles, they are centrifuged 
outward and eventually all the particles propagate along the outer side of the vortex in the cavity.  

 

 
(a) 1s 

 
(b) 3s 

   
(c) 5s 
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(d) 7s 

   
(e) 10s 

   
(f) 15s 

   
(g) 20s 

Figure 3. Snapshots of particles’ positions Re=10 (left), Re=400 (Center) and Re=1000 
(right), at time (a) 1s, (b) 3s, (c) 5s, (d) 7s, (e) 10s, (f) 15s and (g) 20s. 
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4.  Conclusion 
 
Numerical computations of solid particles in a lid-driven cavity flow were performed using 

the lattice Boltzmann mesoscale method and the Newton’s second law (Lagrangian-Lagrangian 
scheme). Results of the present computations show that, almost all the physical detail of this 
transient flow at wide range of Reynolds Numbers are reproduced by the current scheme. The 
computed particle’s trajectories clearly indicate the influence of vortex structure on the dynamics of 
particle in the cavity. Thise demonstrates the capability and the application diversity of the present 
numerical scheme. Future efforts need to extend the current formulation for investigation at various 
types of solid fluid flow related to real engineering problems. 
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