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Abstract 

 
In this paper, a fully non-linear finite difference model has been developed based on the 
inviscid flow equations, and a simple mapping function was used to remove the time-
dependence of the free surface in the fluid domain. The time-varying fluid surface is 
mapped onto a rectangular domain by the Sigma ( )-transformation. This method is a 
simple way to simulate non-breaking waves quickly and accurately especially that has a 
low steepness. The fluid motion is solved in a unit square mesh in the transformed flow 
domain (i.e., computational domain). Difference between the peaks and troughs of waves 
are discussed for three different cases of horizontal (surge), vertical (sway) and combined 
excitations of off and at resonance frequency of the tank. The spectrum analysis of 
horizontally excited tank is presented. The stability and instability regions associated with 
vertical and combined excitations conditions are discussed with the plots of free surface 
elevation, phase-plane diagram and free surface profile. 
 
Keywords: Sloshing; Surge and sway motion; Free surface; Mapping;  -transformation; 
Finite difference method.  

 
1. Introduction 
 

The oscillation of the unrestrained free surface of the liquid in a partially filled container due 
to external excitation is called as sloshing. These motions generate severe hydrodynamic loads that 
can be dangerous for structural integrity in tanks and will raise the stability problems in rockets, 
satellites, LNG ships, trucks and even stationary petroleum containers. Free surface of liquid in a 
container attempts to attain the state of the equilibrium for the effective instantaneous acceleration 
(gravitational, translational, etc.) felt by the fluid. However, the momentum of the fluid and external 
forces on the fluid tank will prevent this state of equilibrium. The knowledge of liquid free surface 
natural frequencies is important in the design of liquid containers subjected to different types of 
excitation [1, 2]. The dynamic behavior of a free liquid surface depends on the type of excitation 
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and its frequency content. Civil engineers and seismologists have been studying liquid sloshing 
effects on large dams, oil tanks and elevated water towers under ground motion. 

In 1951 and 1952, Jacobsen and Ayre [3], and Graham and Rodriquez [4] performed some 
basic studies relevant to this topic. Housner [5, 6] developed an analytical method for the 
determination of hydrodynamic wall pressures under the assumption that the tank was a rigid 
structure fixed at the base and only the fundamental sloshing mode was important. Applications in 
the aerospace industry has been reviewed and discussed by Abramson [7] both analytically and 
experimentally. Ink-trace experiments were conducted by Cole [8] to study the effect of baffle 
thickness in the cylindrical tank. In 1970s and in early 1980s, sloshing phenomena in liquid oil 
carrier vehicles have extensively been studied, since slosh-induced loads can cause serious damage 
to cargo structure in marine engineering. Externally induced sloshing is studied through interface 
location technique by Eswaran et al., [9].  A lot of researchers have done numerical simulation 
either by using self made program or by using commercial CFD packages [10-12]. In general, the 
fluid used in solving the nonlinear sloshing is assumed to be homogeneous, isotropic, viscous and 
exhibits only limited compressibility. Various models and techniques have been used to solve the 
problem. 

The popular numerical methods like finite difference method, the boundary element method 
and the finite element method [13] have been used for the sloshing analysis. Behr and Abraham 
[14] used finite element method to solve the free surface between the inclined walls and explained 
the difficulties associated with free-surface finite element flow simulations and overcoming 
techniques. Recently, Sequentially-Coupled Arterial Fluid–Structure Interaction (SCAFSI) 
technique was proposed by Tezduyar et al. [15] and applied to find the blood pressure profile of the 
cardiac cycle. The various techniques used to handle the free surface behavior in the sloshing have 
been the marker and cell (MAC), the volume of fluid (VOF), etc. [16-21]. Recently, Cruchaga et al. 
[22] proposed the 3D remeshing algorithm to avoid the progressive distortion in the distribution of 
markers in the domain. Recently, the coordinate transformation technique is also applied to this type 
of problem etc. The particular type of coordinate transformation (stretching on vertical direction) is 
called  -transformation. Since they all require complex computer programming in order to treat 
the time varying free surface boundary and update the computational mesh, the  -transformation 
gains popularity because of its simplicity. The  -transformation was applied to nonlinear steep 
waves in fixed and base excited tanks by Chern et al. [23] and the waves in relatively deep water 
was simulated by Turnbull et al. [24]. Frandsen [25] investigated numerically steep free surface 
sloshing in fixed and base-excited rectangular tanks with a focus on moving liquid tank with 
horizontal and vertical excitations. Recently, Chen and Nokes [26], and Dai and Xu [27] applied  -
transformation to predict the sloshing effects on horizontal cylindrical container and 2D rectangular 
tank, respectively. The first few sloshing frequencies in a vertically accelerated container have been 
reported by Eswaran and Saha [28, 29]. Originally,  - transformation was proposed for 
meteorological forecasting by Phillips [30]. Later, Blumberg and Mellor [31] and Mellor and 
Blumberg [32] applied in the context of oceanic and coastal flows. 

In this paper, a fully non-linear model for idealized 2-D waves in a numerical wave tank has 
been developed. The  -transformation technique is used to capture the liquid free surface which is 
used to map the asymmetric liquid domain onto a rectangle, such that the moving free surface in the 
physical plane becomes a fixed line in the computational mapped domain. The fourth order central 
difference scheme and the Gauss–Seidel point successive over-relaxation iterative procedure are 
used to capture the free surface wave profiles and free surface elevation plots of the fluid domain. 
Liquid in a rectangular tank under different regular wave excitations (say horizontal, vertical and 
combined excited conditions) is studied in detail. Spectrum analysis of horizontal excited tank; and 
the stable and unstable conditions of vertical and combined motions are also discussed. Section 2 is 
focused on the mathematical formulations of the present work. Section 3 presents the Mapping 
procedure which transfers the physical domain to the computational domain. In section 4, the finite 
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difference discritization of the computational domain is presented. The grid independence study and 
the behavior of the liquid free surface in fixed tank is studied and discussed in section 5.1 – 5.2. The 
free surface elevation of liquid, phase plane diagram, spectrum analysis for horizontal excitation is 
discussed in section 5.3. The stability and instability regions of vertically excited and combined 
motions (horizontally and vertically) of the tank which will create the interesting fluid free surface 
behavior is discussed in section 5.4 and 5.5. Additionally, in section 5.5, the free surface profiles for 
different time intervals and the 3 dimensional surface plots are also showed to explain the severity 
of the combined motions. 
 
2. Numerical details 

 
A rectangular Cartesian coordinate system is first employed, with origin at the mean free-

surface at the left-hand side of the tank. A 2-D nonlinear wave problem is considered in this case, as 
depicted in Figure 1, where   is the free-surface elevation above still water level, b is the length of 
the tank, and hs is the still water depth. The fluid in the tank is assumed to be inviscid and 
irrotational. On the above assumption that the fluid is governed by potential flow theory, the 
velocity potential   satisfies the Laplace equation. The velocity components normal to the fixed 
boundaries are zero by definition. The left, the right and the bottom boundary conditions are 
indicated by L, R, and B, respectively (Figure 1). 
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Figure 1. Physical domain 

 
The free surfaces occur at the interface between two fluids. Such interfaces require two 

boundary conditions to be applied, viz., (i) a kinematic condition that relates the motion of the free 
interface to the fluid velocities at the free surface (i.e., T1) and (ii) a dynamic condition which is 
concerned with the force balance at the free surface (i.e., T2). Tanks are studied satisfying the 
condition that velocity at the bottom and at the side walls is zero. Zero pressure at the free surface 
of the fluid is also considered in the analysis. In view of the fact mentioned above, kinematic and 
dynamic conditions must be satisfied on the free surface. Therefore, the boundary conditions for the 
physical domain are given by, 
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Here,  tY  is the acceleration of the container in the vertical direction which can be neglected 
from the free surface dynamic boundary condition for fixed container analysis. 

The following quantities are introduced for generating dimensionless governing equations for 
the present study, 
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where, g is the acceleration due to gravity, A is the wave amplitude, tY  is the acceleration of the 
container and t is the time. Here x , tYy t  ,,,   and    represent the dimensionless quantities. Using 
Eq. (5) (hereafter, primes are omitted for simplification), the non-dimensional governing equation 
and boundary conditions can be written as follows, 
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where Eb is the amplitude-length ratio (=A/b).  The Eqns. (6) through (11) form an initial boundary 
value problem which is the Laplace equation with non-linear boundary conditions imposed on the 
free surface. Here, the non-linearity is significant for two reasons. Primarily, the elevation of the 
moving free surface is not known a priori at any given time instant and secondly, the boundary 
conditions on the free surface [i.e., Eqns. (10) and (11)] contain second order differential terms. 
 
3. Mapping procedure 
 

The time-varying liquid free surface can be mapped onto a fixed plane surface by the proper 
coordinate transformations, called the  -transformation, which prevents the need for free surface 
smoothing for the cases considered herein. In this paper,  - transformation is applied in the 
horizontal direction which stretches between the left and the right wall and in the vertical direction 
which stretches between the moving liquid free surface and the bottom of the liquid container to 
convert the moving free-surface physical domain onto a fixed square computational domain. The 
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following section discusses transformation technique in 2-D and 3-D containers elaborately. During 
transformation, the governing equation and boundary conditions will change appropriately. 

 
3.1. Transformation of 2-D Rectangular Container 
 

Initially, formulations are developed for the fixed container condition, so the horizontal 
and vertical excitation terms are neglected from the Eq. 4 in the following formulation part.   

 
3.2.  Coordinate Transformation 

 
The first transformation adopts the  -transformation technique to map the liquid 

domain onto a rectangle, such that the moving free surface in the physical plane (Figure 2) 
becomes a fixed horizontal line in the  -transformed domain (Figure 3). The mapping 
function ),( tx is defined as  
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Figure 2. The 2-D Physical domain 
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Figure 3. The 2-D Computational domain 
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Here, ),( tx is the stretching factor, which varies from 0 to 1. The value of   at the 
bottom of the container is 0, while at the free surface is 1. The first-order derivatives of   can 
be calculated as follows: 
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The potential function ),,( tyx  in the physical domain is transformed to the potential 
function ),,( TX   in the  -transformed domain. 
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The second set of derivatives of   with respect to x and y gets transformed as, 
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Hence, by using the  -transformation, we can derive the new governing equation and 
boundary conditions specified on the rectangular  -transformed domain. The governing 
equation after the first coordinate transformation is given as: 
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Boundary conditions after the first coordinate transformation are given as: 
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where,  
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4. Finite difference discretization in the computational plane 

 
In the current study, the finite difference method is adopted. Assuming the transformed 

domain to be rectangular and constructing on it a unit square mesh of uniform grid in   and   
directions respectively, the standard fourth order central difference approximation is given by 
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where ),( ji  denotes ),( ji  ; 2,    and  2,     are the first and second order central 
difference operators along   and   directions respectively, and   is the mixed second order 
central difference operator. Next to the boundary lines are discretized by second order 
discretization. All the boundary equations are explicitly discretized. The discretized algebraic 
governing and boundary equations are solved by Gauss–Seidel point successive over-relaxation 
iterative procedure. 
 
5. Results and discussion 

 
In this problem, the initial wave profile is considered as )cos(),(
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number (n = 0, 1, 2, …..), and x is the distance in the horizontal direction. The initial wave 
steepness defined for fixed tank studies as gAE n /2 , where gravity field g is usually considered 
as 9.81 m/s2. Here, the ratio of hs to b is considered as 1:2. The linear natural sloshing frequencies 
in the two dimensional rectangular tank are expressed by 

  
,)tanh( snnn hKgK         n=1, 2, 3…     (31) 

 
Now DX   and DY   are switched off for fixed tank condition in dynamic boundary condition. Two 
quantities are usually kept in mind in the sloshing studies: the amplitude of the wave and the 
excitation frequency. Here, the amplitude is measured by the wave steepness. The relation between 
the acceleration and wave steepness is discussed above. 
 

5.1. Independence Study 
 
In order to display that the solution is grid and time independent, simulations have been 

performed using different numbers of grid nodes and different values of t  as shown in Figures 
4 and 5. 

 
The wave profiles along the tank at three different times for the first sloshing mode (n=2) 

are plotted. Results for different grid resolutions are shown related to moderate a wave amplitude 
(E=0.0338) for time steps of  003.0t  sec. Figure 4 shows the different grid size of 2121, 
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4121, 4141 and 4161. Initially, grid size is increased in the horizontal direction from 21 to 
41. As it is a fixed boundary, it is found that there is not much variation on horizontal direction, 
and then, the grid points are increased from 21 to 41 and 61 in vertical direction. Increasing the 
grid points in the vertical direction is found to be more effective in improving the accuracy than 
increasing the grid points in the horizontal direction since it has the moving boundary at top.  It 
has been found that a grid size of 4161 and 4141 and a time step of 0.003 sec and 0.004 sec 
provided sufficient accuracy to capture nonlinearities related to steep wave predictions (E > 
0.02). There is not much variation in vertical direction above the grid size of 4141 for moderate 
wave steepness, and therefore, the grid size of 4141 is sufficient for this problem. 
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Figure 4. Grid independence study for E=0.033 at time 7.5 sec. 
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Figure 5. Time independence study for E=0.033 and grid size 4161. 

 
5.2. Effect of Wave Steepness in Fixed Tank 

 
The wave characteristics include a crest at the top and a trough at the bottom. The 

difference in elevation between the crests and trough is the wave height. The distance between 
the adjacent crests or the troughs of wave is termed the wavelength. The ratio of wave height to 
wavelength is the wave's steepness. While increasing the wave steepness the nonlinearity 
increases. The free surface elevations at the left wall, in the middle and at right wall of the tank 
are showed in Figure 6 (a) and 6 (c). When wave steepness increases, the considerable changes 
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have been observed in the free surface wave profile. On the other hand, the wave phase plane 
diagrams are shown in Figures 6 (b) and 6 (d). These profiles are a repeatable pattern which is 
observed at left wall of the tank. The wave phase plane diagram for low steepness is almost a 
perfect circle as seen from Figure 6(b), while at the same time, increasing the steepness makes 
the phase plane diagram to become oval as depicted in 6 (d). 
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Figure 6. Fixed tank elevation and phase plane diagram for n=2 with grid size 4161 and 
003.0t  sec: (a) - (b) E=0.0338; (c) - (d) E=0.338. 

 
5.3.  Horizontally Excited Tanks  

 
For the horizontally excited tank condition, DY   was switched off from the dynamic 

boundary condition at top wall. The horizontal excited acceleration is fixed as 
))cos(( tAX hhhD  . When the external horizontal forcing frequency is equal to the natural 

sloshing frequency of the liquid, the resonance will occur. In this section, the free surface 
motions are numerically examined off- and at resonance conditions. The initial wave profile is 
considered as 0),(

0



  . For initial wave impulse is considered as )cos(),(

0
xKAtx n


  

and for zero impulse condition is 0),(
0



 tx . And Kh is the measure of nonlinearity parameter 

which is calculated from 
g

Ak hh
h

2
 , where Ah is the excitation amplitude. The sloshing motion 

is more violent at the natural frequency of the container when the excitation frequency is equal to 
the first mode rather than at the third mode, which is a well-known resonance phenomenon.  
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5.3.1. Off and at resonance of horizontally excited tanks 

The horizontal frequency ratio x 









n

h


  is speckled as 0.7, 0.9 and 1.3 for off-

resonance and 1 for at resonance conditions. To validate the developed model, the present 
data have been compared with the results of Frandsen [25]. The results have been found to be 
in good agreement as seen from Figure 7(a). While increasing the excitation frequency, some 
interesting free surface elevation shapes are observed (Figures 7a, 7c, 8a and 9a). When the 
frequency ratio x  is small, standing waves are observed upto certain level. Then waves are 
variations in waves are aroused slowly as shown in Figure 7(a) and while we come around 

x = 0.8 to 0.9  the waves are showing the complete different elevation patterns which has 
the cunning points at certain intervals.  
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Figure 7. Off-resonance horizontal excited tank elevation and phase plane diagram for n=1 
with grid size 4161 Kh=0.0034 and 003.0t  sec (a) - (b) x = 0.7 and (c) - (d) x = 0.9 
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Figure 8. At resonance conditions horizontal excited tank elevation and phase plane 
diagram for n=1 with grid size 4161 Kh=0.0034 and 003.0t  sec. 
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Figure 9. Off-resonance horizontal excited tank elevation and phase plane diagram for n=1 
with grid size 4161,  Kh=0.0034 and 003.0t  sec x = 1.3 

 
After reaching the x =1 the free surface elevation are growing continuously with 

constant increments (Figure 8). Since, at this point the excitation frequency is matched with 
system natural frequency. Figure 8 (a) showed as the free surface elevation is observed 36 
times to amplitude of excitation approximately at non-dimensional time 80. As discussed in 
section 5.3, in Figure 8(a), free surface elevation is shown with two initial conditions viz. zero 
impulse and initial impulse. After few seconds, both the results match very closely. It is 
observed that the initial impulse has not undergone much variation from the original 
behaviour of the liquid wave profiles during sloshing. However, at low frequencies, one can 
expect very small deviations between the initial impulse and the zero impulse.  Finally, the 
frequency ratio was increased to x = 1.3, where by the free surface elevation drastically 
reduces to 3.4 times (from 36 times at resonance frequency) to the excitation amplitude 
approximately at non-dimensional time 80. Figures 7(b), 7(d), 8(b) and 9(b) show the phase 
plane diagram for their respective frequencies. In Figure 8(b), the phase plane diagram is 
moving in a circular path and finally it attains the spiral shape, since it is drawn at the 
resonance condition.  
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5.3.2. Spectrum analysis for horizontally excited tanks 
 

The Fast Fourier Transform (FFT) is extremely important in the area of frequency 
(spectrum) analysis because it takes a discrete signal in the time domain and transforms that 
signal into its discrete frequency domain representation. The FFT does not directly give the 
spectrum of a signal. The Shift is required for visualizing the Fourier transform with the 
zero-frequency component in the middle of the spectrum. 

The spectra of a wave elevation are computed by the FFT, which is given by  





N

j

kj
NjxKX

1

)1)(1()()(  ,     (32)  

where  Ne i
n /)2(    , is a Nth

 root of unity. In order to avoid the effect of discontinuity at 
the boundary, the hamming window as given by   

 Nn
N
nn 





 0,2cos46.054.0)(         (33)  

is used, where the window length is L=N+1. Figure 10 shows the spectra of wave elevations 
at the tank left corner. It also caused peaks in the power spectra to become bigger and more 
peaks appear at different frequencies. Figure 10 (a) shows that the maximum spectral peak 
occurs at the excitation frequency when the excitation frequency is less than the first natural 
frequency and a secondary peak occurs at the container natural frequency. While frequency 
ratio x  approaches 0.9, the partial merging of first mode frequency and the excitation 
frequency slightly increase the energy of the signal as shown in Figure 10 (b). In Figure 10 
(c), a single peak of the dimensionless sloshing energy is observed at frequency ratio of 1, 
which is irrespective of the magnitude of the excitation frequency. At the first modal 
frequency, the response component is observed to increase as the frequency increases. When 
the excitation frequency is greater than 1 , the domination of the first mode reduces with an 
increase in the frequency ratio. When the excitation frequency is greater than the first mode 
(Figure 10 d), the sloshing dominates at the first modal frequency up to second mode ( 2 = 
1.5 1 ) and till this frequency, the secondary peak is observed at the excitation frequency as 
can be seen in Figure 10 (d). 
 
5.3.3. Vertically excited tanks  

 
The initial conditions for vertical excited tank are same as the sloshing motion 

simulation of the fixed tank. It is difficult to simulate sloshing only with vertical excitation 
by experiments. In order to have an initial perturbation in the free surface inside the 
container, horizontal motions need to be excited before the vertical excitation. To avoid this 
situation, the initial standing wave profile is assumed for this work. Initial wave impulse is 
required for vertically excited condition and it is considered here as 

)cos(),(
0

xKAtx n


 . The vertical acceleration of tank is given by 
))cos(( tAY vvvD  , where Av is the vertical forcing amplitude, t is the time, v  is the 

angular frequency of forced vertical motion. The horizontally excited tank acceleration term 
DX   is switched off from the dynamic boundary condition at top wall for this analysis. The 

initial velocity potential in the fluid domain is considered as 0),(
0



 . 
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Figure 10. Spectrum analysis for horizontal excited tank off and at resonance frequencies. 
 
The waves generated by the vertical excitation are called Faraday waves as explored 

originally by Faraday [34] through his experiments. Faraday waves are the resonant waves 
when the excitation frequency is twice the natural frequency for some initial perturbation in 
the container. This resonance condition is called parametric resonance. The study dealing 
with vertical excitation of liquids in a container is referred to as parametric sloshing. For the 
vertically excited tank, the parameter gAk vvv /2  is a measure of the importance of the 
vertical forcing motion and E is the measure of nonlinearity. Frandsen [25] plotted the 
instability map between vnv  /  and vk  and discussed results from stability and 
instability regions. If any of the pairs of the parameters lie in the instability region, then the 
corresponding mode grows exponentially with time. In this section, the profiles are given 
with stability and instability region. Figures 11 (a) and (b) are show behaviour of the liquid 
free surface and phase plane diagrams respectively from the stability region ( v = 1.38 and 
Kv = 0.4). The unstable regions results from v = 1 and Kv = 0.4 for elevation and phase 
plane are plotted in Figures 11 (c) and (d). 
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Figure 11. Stable and unstable regions from vertically excited tank elevation and phase 
plane diagram for n=1 with grid size 4161 and 003.0t  sec (a) - (b) Stable solution at 

v = 1.38 and Kv = 0.4; (c) - (d) Unstable region at v = 1 and Kv = 0.4. 
 

5.3.4. Combined excitation study (Sway and surge motion) 
 

The combined motion of horizontal and vertical excitation is discussed in this 
section. The vertical excited container is used for an ideal earthquake. And the combined 
motions of horizontal and vertical excitations are two major considerable motions during 
earthquake. The water waves at resonance may create the impact pressure rise inside the 
tanks. When the liquid is striking on the wall, the impact pressure which might have been 
raised near the critical pressure range of the tank material will cause the structural damage in 
the tanks.  The violent sloshing of combined excitation creates localized high impact loads 
on the tank roof and walls which may damage the tank. During the combined excitation of 
tank, the flow behaviour becomes tumultuous which creates the intricate free surface shapes 
during this type of excitation. Due to the vertical excitation being present with this combined 
motion, the instability regions exist as discussed in section 5.4. The initial wave impulse is 
required for vertically excited condition and it is considered here as 

)cos(),(
0

xKAtx n


 . The vertical acceleration of tank is ))cos(( tAY vvvD   and the 
horizontal excited acceleration is fixed as ))cos(( tAX hhhD  . The initial velocity 
potential in the fluid domain is considered as 0),(

0



 . The stable and unstable 

regions from horizontally and vertically excited tank elevation and phase plane diagram are 
presented Figure 12 (a) through (d).  Figure 12 (a) and (b) are stable solutions from n=1 with 
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grid size 4161, 003.0t  sec, v = 1.38, x =0.7 and Kv = 0.4 while Figure 12 (c) and 
(d) are from unstable region at n=1 with grid size 4161, 003.0t  sec, v = 0.5, x =0.7  
and Kv = 0.4.  As discussed, if any of the pairs of the parameters lie in the instability region, 
then the corresponding mode grows exponentially with time as shown in Figure 12(c) and 
(d).   
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(a)  Stable solution at v = 1.38, 

x =0.7 and Kv = 0.4. 
(b)  Stable solution at v = 
1.38, x =0.7 and Kv = 0.4. 

Time x 1


/A

h

0 10 20 30 40 50-40

-20

0

20

40

60

  

(c) Unstable region at v = 0.5, 

x =0.7  and Kv = 0.4. 

(d) Unstable region 
at v = 0.5, x =0.7  and 

Kv = 0.4. 
Figure 12. Stable and unstable regions from horizontally and vertically excited tank 
elevation and phase plane diagram for n=1 with grid size 4161 and 003.0t  
sec. 

 
The stable and unstable region surface plots are shown in Figure 13 (a) and (b). The 

surface plot is drawn between time and tank width and free surface elevation which is 
showed in Figure 13 (a) from the stable region (n=1 with grid size 41   61, 003.0t  sec, 

v = 1.38, x =0.7 and Kv = 0.4) and 14(b) from unstable region (n=1 with grid size 41   
61, 003.0t  sec, v = 0.5, x =0.7 and Kv = 0.4). Figure 14 shows the free surface 
elevation from time 2.1 sec to 5.4 sec with the time interval of 0.3 seconds. The free surface 
elevation along the tank width is illustrated here. It is observed that the waves are moving up 
and down, and it must not be a uniform wave as observed in a fixed tank. One can easily 
find the considerable variation due to the combined excitation. 
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(a) Stable region v = 1.38 and Kv = 0.4 

 

 
(b) Unstable region v = 0.5 and Kv = 0.4 

Figure 13. Stable and unstable regions from horizontally and vertically excited tank surface 
plot for n=1 with grid size 4161 and 003.0t  sec at x =0.7. 
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Figure 14. Free surface profile diagram for horizontally and vertically excited tank n=1 with 
grid size 4161, 003.0t  sec, v = 1.38, x =0.7 and Kv = 0.4. 

 
6. Summary and Conclusions 
 

This paper deals with the non-linear effects of standing wave motion of liquid in a 2-D 
rectangular tank. Governing equation and boundary conditions have been developed based on the 
potential flow theory. A fully non-linear finite difference model had been developed based on the 
inviscid flow equations, and a simple mapping function is used to remove the time-dependence of 
the free surface in the fluid domain. Mapped governing equations and boundary conditions are 
solved by finite difference method. Results of liquid sloshing induced by horizontal, vertical and 
combined (horizontal and vertical) base excitations have been presented for small to steep non- 
breaking waves. Simulations are limited to water fill ratio (hs/b) of 0.5. However, this numerical 
model is valid for any water depth except shallow and deep sloshing. For the shallow sloshing, 
viscous effects would become important, which we considered as inviscid fluid in our numerical 
model. Primarily, the model was validated for sloshing motions and the effect of the steepness of 
wave for a fixed tank. The  -transformation is limited to small steep non overturning waves. The 
numerical model captured the free surface displacement at the left wall, right wall and at the center 
of the tank. A good agreement between our numerical model and previously published result [25] 
had been obtained for low steeping waves. The grid independent test was conducted for grid sizes 
of 2121, 4121, 4141 and 4161 and finally, 4161 is selected as grid resolution. Increasing 
grid points in the vertical direction was found to be more effective in improving the accuracy. The 
wave profiles along the tank at three different times for the first sloshing mode were plotted. Phase-
plane plot shows the behaviour of the free surface with repeatable patterns for the peaks and troughs 
in bounded orbits. 
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The numerical wave tank captured steep waves generated by horizontal, vertical and 
combined forcing amplitudes. The horizontally excited tank free surface elevation and phase plane 
diagram was discussed with off and at resonance frequencies. Behaviours show the effect of wave 
excitation while matching with resonance frequency. The spectrum analysis of horizontally excited 
tank is also presented. The vertical and excitation causes the instability associated with parametric 
resonance of the combined motion for a certain set of frequencies and amplitude of the vertical 
motion. The initial condition for the surface elevation was an important parameter as there should 
be some initial perturbation in the system for the generation of waves due to vertical excitation. 
These conditions were also applied to combined excitation. Here, the data were chosen from the 
stability region as well as instability region as discussed in section 5.4 and 5.5. Early simulations of 
the liquid sloshing problem have mostly been performed with waves of small steepness. But the 
present work reported with low and moderate steepness of wave. The present work can be extended 
to a 3D tank and can also be solved by some other higher order numerical methods like compact 
scheme. Moreover,  -transformation can be applicable for polar coordinates geometries as well. 
 
Nomenclature 
 
A Wave amplitude, m 
Av    Vertical forcing amplitude, m 
Ax Horizontal forcing amplitude, m 
b Length of the tank, m  
E Wave steepness 
hs Still water depth, m 
h Instant water height from tank bottom, m 
Kn Wave number 
Kv Nonlinearity parameter in vertical direction 
Kh Nonlinearity parameter in horizontal direction 
n Mode number 

DY    Vertical acceleration of the tank, m/s2 

DX   Horizontal acceleration of the tank, m/s2 

Greek symbols 

n  Natural sloshing frequency , rad/s 

v  Frequency of vertical motion, rad/s 

h  Frequency of horizontal motion, rad/s 

  Free-surface elevation, m 
  Stretching Factor 
  Velocity potential function at physical domain ),,( tyx  
  Velocity potential function at transformed domain ),,( TX   
  Velocity potential function at Computational domain ),,(   

v  Frequency ratio in vertical direction )/( vn   

x  Frequency ratio in vertical direction  nh   
2,  First and second order central difference operators 

  ,  Mixed second order central difference operator. 
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