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Abstract

The scalar tuning of a compressible fluid solver for a supercomputer with a distributed
memory architecture is conducted. We use the K computer which is one of the peta-scale
supercomputers recently developed in Japan. A computational code “LANS3D” and its
high-order compact differencing option are tuned. The original version of the code achieves
approximately 4.5% of full performance of CPU for the simple test case. Scalar tuning
based on combining do-loops works well, and the tuned code attains about 10% of full
performance for the same case. The reasons are the improvement in the use of the cache,
the suppression of the data transfer, and the efficient use of the data that once transferred to
the cache from the memory that results in hiding the low speed of data transfer. The tuned
code becomes twice faster than the original one in the wall-clock time and enables us to
perform over-160-case parametric study about airfoil flow computation by large-eddy
simulations with high-order accurate and high resolution numerical scheme.

Keywords: scalar tuning; compressible fluid solver; compact scheme; large-eddy
simulation; large scale computation

1. Introduction

Recently, supercomputers based on distributed memory architecture with many computer nodes,
such as “the K computer” [1], have been developed. With regard to the research in fluid dynamics,
it is expected that such supercomputers provide precious opportunities to address various unsolved
and interesting problems including high Reynolds number flow and multi-physics problems.
However, the byte-per-flops (B/F) ratios of typical new supercomputers tends to scale-down, thus
fluid solvers, which generally require a large amount of data transfer from the memory to the cache
and the register of a processor, become inefficient. This is very severe condition for fluid dynamics
research with the supercomputers. Acceleration of computation based on scalar tuning becomes one
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of keys in order to improve the efficiency of the computation. Therefore, this directly shows that we
need to tune computational codes to the supercomputers with lower B/F ratio. In other words,
contrivance of programing is required to realize better management of the data transfer.

In the current study, an in-house compressible fluid solver, LANS3D and its option of high-order
compact differencing scheme are employed. The high-order compact scheme is one of the high-
resolution global schemes and requires a lot of memory transfer. Therefore, tuning it for a
supercomputer with a distributed memory architecture with many nodes is difficult even though its
high resolution and high formal order of accuracy are attractive. In this paper, our efforts to improve
the efficiency of the computational fluid dynamics code based on the compact scheme are
presented. The code is partially rewritten and its speed and time budget are measured to identify
what type of the tuning should be taken generally for the tuning of the compact scheme. Lastly, the
effectiveness of the scalar tuning presented in current study on one real problem is demonstrated.

2. Research significance

Research significance of this study is offering scalar tuning of a computational fluid dynamic
code using a compact differencing scheme though the detailed analyses of computational time on
each step. The parallel efficiency of the code is not main obstacle to the speed-up of the
computational code. Therefore, the way tuning a compact-scheme-based fluid solver presented in
this study can be applied for other compact-scheme-based fluid solvers.

3. Brief description of computational code
As noted in the previous section, we use an in-house compressible flow solver named

“LANS3D.” This code was originally developed by Fujii and Obayashi [2] and the first version of
the code supported the monotonically upstream scheme for conservation law scheme [3]. Then, the
compact differencing [4] option was implemented by Arasawa et al. [5] and this option was
validated through several computations including the transitional boundary layer problems [5, 6].
Also, we have a different option of the weighted compact nonlinear scheme, which is for shock-
containing flows [7, 8]. For temporal discretization of any options in the code, the alternate-
directional-implicit symmetric-Gauss-Seidel (ADI-SGS) scheme [9, 10] is adopted to converge the
Euler implicit scheme or the backward second order finite differencing scheme.

The target flow in our project is subsonic, and in this study the compact differencing option is
adopted for the scalar tuning to the “K computer.” The K computer is a supercomputer recently
developed in Japan and based on the distributed memory architecture with over 80,000 computer
nodes [1]. Part of subroutines related to the compact scheme is originally written for the vector
supercomputers such as Fujitsu VPP800 and NEC SX6 and SX9 that have larger B/F ratios than
that of the K computer. Parallel computation has been performed using message passing interfaces
(MPI) with which the sufficient parallel efficiency of weak scaling is obtained as shown in Table 1.
Here, weak scaling is defined as:

weak=(FLOPSN/FLOPSM)/(N /M),
where N and M denotes number of computer nodes used for measurement computations and

reference computations, FLOPS denotes floating-point operations per seconds and its subscript
denotes number of computer nodes used for the computation.  Note that the size of a problem per
the cores is same as that utilized for the scalar tuning that will be discussed in the next section.

TABLE1: RESULTS OF THE WEAK SCALING OF LANS3D

Number of computer nodes for measurement (N) Number of nodes for reference (2M≤N) Weak scalability (weak)
2,000 (16,000 cores) 1,000 0.952
3,840 (30,720 cores) 1,920 0.972
12,288 (98,304 cores) 3,072 0.960

24,576 (196,608 cores) 12,288 0.967
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Figure 1. Flowchart of computation with the compact scheme option in LANS3D

Figure 1 explains the flowchart of computation with the compact scheme options in LANS3D.
There are several subroutines: set_qold/new, locals, cmpt_rhsr, cmpt_visfull, lhs3d, and
cmpt_filterv. Their roles in the code are summarized in Table 2. Figure 2 shows pseudo codes that
describe the way to implement compact differencing i- and j-direction in the original LANS3D.
Here, f is m-component vector function differenced in the subroutine, fdi and fdj are differenced
vectors in i and j direction, respectively. Indices i, j, and k are used for expressing a grid point in
three-dimensional space, and an array is created in the order of (m,i,j,k). The temporal array, namely
ff and rhs, are used for simplicity and readability, and a subroutine “compact_diff” corresponds to
compact differencing part.

TABLE 2: MAIN SUBROUTINES IN LANS3D

Name of
subroutines Role Reference

initial Read grid file, set metrics and initial flow condition For metric evaluation, see references
[11-13]

set_qold/new Replace the previous time step solution vectors or new
time step solution vectors

locals Calculate the primitive variables
cmpt_rhsr Compute convection terms by 6th order compact scheme Reference [4]
cmpt_visfull Compute viscose terms by 6th order compact scheme Reference [4]
cmpt_filterv Apply the 10th order filter to the conservative variables Reference [14]
lhs3d Implicit time integration with ADI-SGS scheme Reference [8,9]
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(a)

Differentiation for i –direction
DO k

DO j (parallel in node)

DO i (direction of differentiation)

DOm

ff(m, i, j)= f(m, i, j, k)

ENDDO

ENDDO

ENDDO

call compact_diff(ff,rhs)

DO j (parallel in node)

DO i (direction of differentiation)

DOm

fdi(m,i,j,k)=rhs(m,i,j)

ENDDO

ENDDO

ENDDO

ENDDO

$L2

(b)

Differentiation for j –direction
DO k

DO i (parallel in node)

DO j (direction of differentiation)

DOm

ff(m, j, i)= f(m, i, j, k)

ENDDO

ENDDO

ENDDO

call compact_diff(ff,rhs)

DO i (parallel in node)

DO j (direction of differentiation)

DOm

fdj(m,i,j,k)=rhs(m,j,i)

ENDDO

ENDDO

ENDDO

ENDDO

$L2

Figure 2. Pseudo codes which mimic the compact scheme in original LANS3D

TABLE 3: DETAILS OF THE COMPUTER NODE OF THE K COMPUTER

Devices
Processing unit SPARC64TM VIIIfx

8 cores
2.0 GHz

Shared 6MB L2 cache
128GFLOPS/Processing unit

Water cooling system
Memory DDR3 SDRAM

16GB

4. Platform of a supercomputer with a distributed memory architecture
As previously mentioned, we utilize the K computer that is one of the peta-scale supercomputers

and based on the distributed memory architecture with over 80,000 computer nodes [1]. The basic
information of computer node is given in Table 3. In this paper, we focus on the scalar tuning of
LANS3D that has the great impact on the speed-up of the computational code.

5. Discussion of results

5.1 Case description for the test of scalar tuning

A regular structure grid is adopted for a test case. The number of computational grid points is
64×64×64. The freestream condition is imposed on all the grid points as an initial condition.
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5.2 Scalar tuning of LANS3D

Table 4 and Figure 3 present results of scalar tuning of the test case with the original and tuned
LANS3D. It is noted that time cost and floating-point operations per seconds (FLOPS) are
measured by a timer function and a hardware counter information (PA) provided by the K computer,
respectively, and measurements are performed for subroutine by subroutine.

TABLE4: RESULTS OF SCALAR TUNING

Time cost The ratio of actual FLOPS to peak FLOPS
Before tuning [sec.] After tuning [sec.]

Speedup
Before tuning [%] After tuning [%]

Program
LANS3D 119.89 55.14 2.17 4.47 9.65

Subroutines
cmpt_rhsr 39.36 7.95 4.95 2.94 9.31
cmpt_visfull 25.10 18.31 1.37 6.93 9.66
cmpt_filterv 10.70 8.34 1.28 8.40 10.91
lhs3d 33.05 9.27 3.57 1.32 3.41
set_qold/qnew 3.77 1.42 2.65 0 0
locals 4.11 3.37 1.22 9.34 12.08

Following two points are identified from the results of the original LANS3D that need the scalar
tuning: i) waiting time for synchronization (see the purple region in bars shown in Figure 3) and ii)
waiting time for floating-point load memory and cache access (see the red and dark-pink regions in
bars shown in Figure 3). We conduct several scalar tunings for main subroutines in LAN3D as
shown in Tables 1 and 3 in order to improve a performance of LANS3D in the K computer in terms
of a ratio of actual FLOPS to peak FLOPS and computational time. Detailed discussion regarding
the results of the scalar tuning is given later.

Figure 3. PA plot of original and tuned LANS3D

As seen in Table 4 and Figure 3, it is clearly shown that the scalar tuning performed in current
study improves the performance of LANS3D. Specifically, total computational time significantly
decreases (from 119.89 seconds down to 55.14 seconds) and the ratio of actual FLOPS to peak
FLOPS remarkably improves (from 4.47% up to 9.65%). Additionally, we have theoretical
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assessments for a subroutine named cmpt_triv4 that is frequently called in compact-scheme-related
subroutines in LANS3D to estimate maximum ratio of actual FLOPS to peak FLOPS. The
estimated maximum ratio of actual FLOPS to peak FLOPS is 9.6 % for this subroutine and this
value is close to the result of tuned LANS3D.

The possible explanations for above improvement of the performance of LANS3D due to scalar
tuning are listed as below:

1) Adjustment of load balancing by changing the do-loop that thread parallelization applies.
2) Reduction of overhead due to creating new threads between two do-loops, improvement in

use of cache, and reduction in a number of sliding access by the fact that each thread solves i
and j direction together (combining do-loops) and then k direction.

Figure 4. PA plot of first thread for cmpt_rhsr in the original and tuned LANS3D

Detail description of the scalar tuning and source of the issues for subroutines related to compact
scheme (i.e. cmpt_rhsr, cmpt_visfull, and cmpt_filterv) is given as follows:

cmpt_rhsr:
As seen in Figure 4, waiting time for floating-point load cache (the dark-pink region in a bar in

Figure 4) and memory access (the red region in a bar in Figure 4) dominates the computational time
of this subroutine in the original LANS3D. Since the original LANS3D has been optimized and
tuned for vector supercomputers, the implementation of the original LANS3D causes frequent
discontinuous-array accesses in supercomputers with the distributed memory architecture. In order
to decrease the cost of floating-point load cache and memory accesses, we combine couple of do-
loops in this subroutine. The modified structure of this subroutine is similar to that shown in Figure
5 in which the tuned pseudo code for the same computation shown in Figure 2. In Figure 5, ffi, ffj,
rhsi, and rhsj are temporal array introduced for simplicity and readability. This tuning results in
significant reduction of a number of $L1 and $L2 miss (see a bar of right side in Figure 4).
Especially, waiting time for floating-point memory access (the red region of the bar in left side in
Figure 4) becomes invisible range. Hence almost five times speed-up is attained.
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Differentiation for combined
i&j –direction

DO k

DO j

DO i

DOm

ffi(m, j, i)= f(m, i, j, k)

ffj(m, j, i)= f(m, i, j, k)

ENDDO

ENDDO

ENDDO

call compact_diff(ffi,rhsi)

call compact_diff(ffj,rhsj)

DO j

DO i

DOm

fdi(m,i,j,k)=rhsi(m,i,j)

fdj(m,i,j,k)=rhsj(m,j,i)

ENDDO

ENDDO

ENDDO

ENDDO
$L2

Figure 5. Pseudo code which mimics the compact scheme in tuned LANS3D

cmpt_visfull:
Waiting time for floating-point load cache access dominates a computational time of this

subroutine in the original one (see the dark-pink region in a bar in Figure 6). Six do-loops (i.e.
similar to Figure 5) are combined so as to reduce amount of memory transfer. Although the
combining of do-loops decreases a number of $L1 and $L2 misses, its speedup is less than that of
cmpt_rshr. This suggests that combining of do-loops works well in the case that waiting time for
floating-point memory access dominates a computational time.

Figure 6. PA plot of first thread for cmpt_visfull in the original and tuned LANS3D
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cmpt_filterv:
As similar to cmpt_visfull, waiting time for floating-point load cache access dominates a

computational time of this subroutine in the original one. Couple do-loops are unified for designing
a reduction of amount of memory access and transfer. This also results in reduction of a number of
$L1 and $L2 misses.

Furthermore, detail description of scalar tuning and source of the issues for subroutine that is
irrelevant to the compact differencing scheme is presented as below:

set_qnew/qold:
As explained in Table 2, set_qnew/qold is designed to replace the previous time step solution

vectors or the new time step solution vectors. It means that no computations are required. For this
subroutine, waiting time for floating-point load cache access dominates a computational time. After
we modify the way to replace the solution vector from using an assignment statement expression to
using pointers, this leads to decrease of a number of $L1 and $L2 misses.

locals:
As similar to cmpt_visfull, cmpt_flterv, and set_qnew/qold, waiting time for floating-point load

cache access dominates a computational time of this subroutine in the original one. We optimize
memory transfer and then it reduces a number of $L1 and $L2 misses.

lhs3d:
As explained in Table 2, lhs3d is designed to perform implicit time integration with ADI-SGS

scheme. Waiting time for floating-point load cache access dominates a computational time in the
original one. Moreover, there is a problem in load balancing among threads due to overhead of
thread parallelization. We apply thread parallelization to outer do-loop so as to improve load
balancing and combine couple do-loops to localize memory access. Those tunings adjust load
balancing as well as reduce a number of $L1 and $L2 misses.

5.3 Example: a large-eddy simulation around NACA0015 wing at a Reynolds number 63,000

The effectiveness of scalar tuning presented in current study on one real problem is demonstrated.
A large-eddy simulation (LES) around a NACA0015 wing at a stall angle (i.e. 16 deg.) and a
Reynolds number Re of 63,000 is performed using 380 computer nodes (3,040 cores) of the K
computer.

Three-dimensional compressible Navier-Stokes equations are employed as the governing
equations. These equations are solved in the generalized curvilinear coordinates. The spatial
derivatives of the convective and viscous terms, metrics, and Jacobian are evaluated by a sixth-
order compact scheme [3]. Near the boundary, second-order explicit difference schemes are used.
Tenth-order filtering [14] is used with a filtering coefficient of 0.495. For time integration, ADI-
SGS methods [9, 10] are used. To ensure time accuracy, a backward second-order difference
formula is used for time integration, and five sub-iterations are adopted. The non-dimensional
computational time step is 0.0002 that corresponds to maximum Courant-Friedrichs-Lewy number
of approximately 2.0. In a standard LES approach, additional stress and heat flux terms are
appended, but in an implicit LES (ILES) approach [17] they are not appended. In this research,
ILES is employed, and a high-order, low-pass filter selectively damps only poorly resolved high-
frequency waves. This filtering regularization procedure provides an alternative method to the use
of standard sub-grid-scale models. At the outflow boundary, all variables are extrapolated from one
point in front of the outflow boundary. For the airfoil surface, no-slip and adiabatic-wall conditions
are adopted. A periodic boundary condition is applied to the boundaries in the spanwise direction.
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Total number of grid points is approximately 20,000,000. Further information can be found in the
references [15, 16].

Table 4 proves that the scalar tuning works well for a real problem and remarkably saves the
computational time in comparison with that computed by the original LANS3D. This makes one
simulation twice more efficient, and leads to over-160-case parametric study of ILES [16] as shown
in Figure 7.

TABLE4: COMPARISON OF A COMPUTATIONAL TIME BETWEEN THE TUNED AND THE ORIGINAL
LANS3D FOR AN ILES AROUND NACA015 AIRFOIL

Time cost spent to compute 1 flow throughAirfoil Number of computer nodes used
Before tuning [sec.] After tuning [sec.]

Speedup

NACA0015 380 8,520 3,180 2.68

Figure 7. Overview of over-160-case parametric study of ILES [16]. Iso surface indicates second
invariant of velocity gradient tensor and it is colored by chord-direction vorticity. Contours near the

wing surface in the backside and the plane denote chord-direction velocity.

6. Summary

In this study, the scalar tuning of a compressible fluid dynamics solver using the compact scheme
for the supercomputer with the distributed memory architecture with many computer nodes was
presented. The K computer was used. Acceleration of computation and improvement maximum
ratio of actual FLOPS to peak FLOPS were achieved by: i) improvement of load balancing by
changing the do-loop that thread parallelization applies; and ii) reduction of overhead due to
creating new threads between two do-loops, improvement in use of cache, and reduction in a
number of sliding access by the fact that each thread solves i and j direction together and then k
direction. The tuned code was twice faster than the original code and its efficiency is close to 10%
that is theoretical limit. Using the tuned code, over-160-case parametric study was successfully
conducted with approximately half of computational cost in comparison with that of the original
code. We believe that the way tuning compact-scheme-based fluid solver in this study can be also
applied for other compact-scheme-based fluid solvers.
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