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Proper determination of inclination angle of a flat tube may increase the overall heat 
transfer performance without extending heat transfer surface. In this paper, the 
inclined flat tube heat exchanger with plain fins is numerically investigated. The 
influence of flat tube inclination angle and Reynolds number on the thermo-hydraulic 
performance index was evaluated. Tube pitch, fin spacing and flat tube size are fixed. 
Solving 3D computational domain with the symmetric boundary condition is used to 
reduce computation time. The results show that when increasing the inclination angle 

of the flat tube from 0 to 45, both heat transfer and pressure loss increase because 
the free area of air flow decreases leading to an increase in air velocity and 

impingement heat transfer. The variation of inclination angle from 0 to 15, the 
increase in heat transfer is stronger than the increase in the pressure loss penalty, so 

the performance index reaches a maximum of 0.405 at the angle of 15. Contours of 
temperature, pressure and velocity at different inclination angles are presented to 
clarify the thermo-hydraulic characteristics of finned-tube heat exchangers using 
inclined flat tubes. The current work yields heat transfer enhancement ability by 
adjusting inclination angle of a heat transfer flat tube. 
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1. Introduction 
 

Heat exchanger (HE), which takes charge of thermal energy exchange of hot and cold fluids, is a 
vital part of thermal systems and networks [1]. Depending on the intended use, heat exchangers have 
different shapes and structures. The simplest one is attributed to a double-tube HE consisting of 
tubes concentrically attached to create space for fluid to move and transfer heat [2,3]. Another type 
is the shell-and-tube heat exchanger which is commonly used in the large-capacity field exchanger 
[4]. The finned-tube heat exchanger is a compact HE which is widely used in household and industrial 
applications [5-8]. These can be mentioned as microprocessor coolers that use a liquid coolant and 
dissipate heat to the surrounding environment via the air blowing through the fins, or the outdoor 
and indoor units of air conditioners [9]. In addition, by combination with measures to enhance heat 
transfer on the heat exchanger surface, the heat transfer capacity is increased compared to 
traditional smooth surfaces and fluids [10-12]. 
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Recently, heat exchangers with non-circular tube are used to speed up heat transfer rate and 
reduce pressure loss. Wang et al., [13] studied elliptical tubes in a compact heat exchanger. Tubes 

have ellipticity ratios from 0.4 to 1 and inclination angles from 0 to 90 to investigate heat transfer 

and pressure loss. They confirmed that the ellipticity ratio of 0.6 and the tilt angle of 30 provide the 
best heat transfer effectiveness. Yogesh et al., [14] concluded that heat transfer was the highest at 

ellipticity ratio of 0.6 and inclination angle of 20. Furthermore, this ellipticity ratio can lead to reduce 
pressure loss up to 53% compared to that of circular tube. Gholami et al., [15] studied the 
combination of corrugated fin and elliptical tube in a compact heat exchanger. The results show that 
the combination reduces pressure loss by 19% and increases heat transfer rate up to 20%. Another 
kind of non-circular tube is the flat tube which proves to be easier to fabricate and install than the 
elliptical tube. Zaidan et al., [16] explored flat tubes with perforated circular fin. They came to the 
conclusion that the flat tube and triangular perforated fins provide high thermohydraulic 
performance. Carpio and Valencia [17] inserted a vortex generator around flat tubes in a compact 
heat exchanger. The numerical results show that the thermal performance is increased by 52% 
compared to the finned flat tube without vortex generator. The most recently, Alnakeeb et al., [18] 
numerically investigated flat tubes with six different aspect ratios from 0.33 to 1 to show their 
influence on the thermo-hydraulic properties. The results demonstrate that the performance index 
is increased by 42% compared with the circular tube. Zheng et al., [19] numerically examined flat 
tube heat exchanger with inclined ribs inside the tube. They reported that the combination of flat 
tube and ribs induced four swirl flows which result in the improved heat transfer. Gu et al., [20] 
experimentally investigated condensation heat transfer and pressure drop inside an inclined flat 
tube. They proved that the inclined flat tube reveals a better condensation heat transfer coefficient 
than that of a horizontal circular tube due to the thinner condensate film thickness. The above works 
denoted high heat transfer rate and low pressure drop characteristics of the flat tube. However, there 
are few studies on fin and flat tube heat exchanger as confirmed by Sadeghianjahromi and Wang 
[21].  

From the above literature review, it can be seen that the inclined elliptical tube and the horizontal 
flat tube are capable of increasing the heat transfer rate and reducing the airside pressure loss of a 
compact heat exchanger. However, a study of finned-tube heat exchanger with inclined flat tube was 
not found. This study is to fill the gap by investigating the influence of flat tube inclination on thermo-

hydraulic performance. The tilt angle varies from 0 to 45 to investigate the air temperature, velocity 
and static pressure fields in flat tube heat exchangers via CFD (Computational fluid dynamics) 
analysis. From there, the friction factor and the Colburn factor are deduced to find out the 
appropriate configuration.  

 
2. Numerical Methodology  
 

Figures 1 and 2 show the three-dimensional (3D) calculation domain with dimensions of 
76.2×25.4×1.756 mm and four flat tubes. The tube dimension (aspect ratio of 0.4) and tube pitch are 

fixed as shown in Figure 1. The angle of inclination of the tube varies from 0 to 45 with increments 

of 15. The center of rotation of the tube is located at the center of the tube. The fin in this study is 
a plain fin with fin spacing H = 2 × 1.756 mm = 3.53 mm. Figure 2 describes the boundary conditions 
for numerical solutions in ANSYS Fluent 19.2. It should be noted that the computational domain size 
is adopted from the study of Yogesh et al., [14]. However, the symmetry boundary condition has 
been applied in this study to reduce the number of grids which leads to a reduction in computation 
time. Fin and tube surfaces are maintained the fixed temperature of Ts = 373 K while the inlet air 
temperature is Tin = 298 K [14,18]. Atmospheric pressure was applied to the outlet of the 
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computational domain. Velocity inlet uin in range of 5.7 to 7 m/s was assigned to the left boundary 
face of the Figure 2 corresponding to Reynolds number of 1300, 1450, and 1600 where the number 
is defined as [14] 
 

𝑅𝑒 =
𝑢𝑖𝑛𝐻

𝜇
               (1) 

 

where  and  are respectively the air density and dynamic viscosity.  
 

 
Fig. 1. Geometry of the computational domain (dimensions in mm) 

 

 
Fig. 2. Description of boundary conditions 

 
Figure 3 shows the grid generation performed in this study. The hexahedral element was selected 

in this work due to its uniformity and smooth which ensure numerical prediction and computational 
cost [18]. The numerical computation was performed in ANSYS fluent 19.2 software installed in the 
workstation desktop computer equipped with Intel Xeon CPU E5-2678 v3, 2.50 GHz, 24 cores, 48 
threads (2 processors) and 32 GB RAM.  
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Fig. 3. Mesh generation in hexahedral form 

 

The standard k- turbulence model was chosen in this study because it was tested in a previous 
study [14]. The problem is numerically solved with the following assumptions 
 

i. Steady-state conditions and negligible radiation 
ii. Fin temperature is uniform and equals to the temperature of tube surface [14,18] 

iii. Airflow is assumed to be incompressible 
iv. The air properties are temperature independent 

 
Upon the assumptions, the heat and fluid flow in the fin and inclined flat tube heat exchanger 

were modeled. The used governing equations are presented as below [14] 
Continuity equation 
 
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑧
= 0             (2) 

 
x-momentum equation 
 

𝜌 (𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
+ 𝑤

𝜕𝑢

𝜕𝑧
) = −

𝜕𝑃

𝜕𝑥
+

𝜕

𝜕𝑥𝑗
[(𝜇 + 𝜇𝑇) (

𝜕𝑢

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥
)]        (3) 

 
y-momentum equation 
 

𝜌 (𝑢
𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
+ 𝑤

𝜕𝑣

𝜕𝑧
) = −

𝜕𝑃

𝜕𝑦
+

𝜕

𝜕𝑥𝑗
[(𝜇 + 𝜇𝑇) (

𝜕𝑣

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑦
)]        (4) 

 
z-momentum equation 
 

𝜌 (𝑢
𝜕𝑤

𝜕𝑥
+ 𝑣

𝜕𝑤

𝜕𝑦
+ 𝑤

𝜕𝑤

𝜕𝑧
) = −

𝜕𝑃

𝜕𝑧
+

𝜕

𝜕𝑥𝑗
[(𝜇 + 𝜇𝑇) (

𝜕𝑤

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑧
)]        (5) 

 
Energy equation 
 

𝜌𝑐𝑝 (𝑢
𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
+ 𝑤

𝜕𝑇

𝜕𝑧
) =

𝜕

𝜕𝑥𝑗
[(𝜆 +

𝜇𝑇𝑐𝑝

𝑃𝑟𝑇
)
𝜕𝑇

𝜕𝑥𝑗
]          (6) 
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Turbulent kinetic energy (k) equation 
 

𝜌 (𝑢
𝜕𝑘

𝜕𝑥
+ 𝑣

𝜕𝑘

𝜕𝑦
+ 𝑤

𝜕𝑘

𝜕𝑧
) =

𝜕

𝜕𝑥𝑗
[(𝜇 +

𝜇𝑇

𝜎𝑘3
)
𝜕𝑘

𝜕𝑥𝑗
− 𝑃𝑘 − 𝛽𝜌𝑘𝜔]        (7) 

 

Turbulent dissipation rate () equation 
 

𝜌 (𝑢
𝜕𝜔

𝜕𝑥
+ 𝑣

𝜕𝜔

𝜕𝑦
+ 𝑤

𝜕𝜔

𝜕𝑧
) =

𝜕

𝜕𝑥𝑗
[(𝜇 +

𝜇𝑇

𝜎𝜔3
)
𝜕𝜔

𝜕𝑥𝑗
] + 2(1 − 𝐹1)𝜌

1

𝜎𝜔2𝜔

𝜕𝑘

𝜕𝑥𝑗

𝜕𝜔

𝜕𝑥𝑗
+ 𝛼3

𝜔

𝑘
𝑃𝑘 − 𝛽3𝜌𝜔

2    (8) 

 
where F1 is the blending function, u, v and w are velocities in x, y and z Cartesian directions, 
respectively, 𝜇𝑇 is the turbulent viscosity, and PrT is the turbulent Prandtl number. 

To reach convergence for highly swirling flows after a tube and reversed flow at the outlet, the 
PRESTO! pressure interpolation scheme and the under-relaxation factor for momentum equation of 
0.6 were employed. The average calculation time of a case is about 10 minutes to obtain all residuals 
of 10-6. To check grid independence, five different element sizes were performed for the case of Re 

= 1600 and flat tube angle of 15. The results shown in Figure 4 revealed that when the number of 
elements is greater than 150000, the simulation results are almost invariant with the number of 
elements, so the settings in this element number are applied to all the remaining cases in the study. 

Data reduction including Colburn factor j and friction factor f is carried out as the following. 
Thermal energy of the air received from fin and tube surfaces is estimated as 
 

Q = uinAcp(Tout – Tin)              (9) 
 
where A is flow cross-sectional area ở inlet, and cp is specific heat of the air. Heat transfer coefficient 
is calculated from heat transfer equation as [18] 
 

ℎ =
𝑄

𝐴𝑠∆𝑇𝑙𝑚
  (10) 

 
where As is the surface area of fin and tube, and ∆𝑇𝑙𝑚 is the logarithmic mean temperature difference 
 

∆𝑇𝑙𝑚 =
𝑇𝑜𝑢𝑡−𝑇𝑖𝑛

𝑙𝑛
𝑇𝑠−𝑇𝑖𝑛
𝑇𝑠−𝑇𝑜𝑢𝑡

  (11) 

 
Nusselt number is defined as [14] 
 

𝑁𝑢 =
ℎ𝐻

𝜆
  (12) 

 

where  is thermal conductivity of the air. The Colburn factor is calculated by 
  

𝑗 =
𝑁𝑢

𝑅𝑒𝑃𝑟1/3
  (13)  

 

where Pr is Prandtl number, Pr = cp/. The friction factor is derived from air pressure difference 
from the inlet to the outlet (∆𝑃) as 
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𝑓 =
2∆𝑃𝐻

𝜌𝑢𝑖𝑛
2 4𝐿

  (14) 

 
where L is flow length. Table 1 presents the thermophysical properties of the air used in this study. 
Figure 5 depicts a comparison of simulation results in the present study with published data [14]. In 
this comparison, a horizontal elliptical tube of the same size (aspect ratio of 0.6) was used. The results 
show that the variation of the Colburn factor with the Reynolds number between the two results is 
good agreement. Therefore, numerical methodology is applied to all flat tube cases in this study. 
 

Table 1  
Thermophysical properties of air 

Parameter Value 

Density  1.185 kg/m3 

Heat capacity cp 1049 J/kg K 

Dynamic viscosity  1.831×10-5 Pa.s 

Thermal conductivity  0.0261 W/m K 

 

 
Fig. 4. Grid independence test in the case of Re = 1600 and angle of 15 

 

 
Fig. 5. Validation with the published data [14] for the elliptical tube 
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3. Results and Discussion 
 

Parametric analysis of the influence of Reynolds number and inclination angle of flat tubes on 
Colburn factor, friction factor and thermal hydraulic performance is presented in this section. Figure 
6 shows the effect of key parameters on the Colburn factor j. It is easy to see that as Re increases, 
the factor decreases, as expected. At certain Re, when increasing the angle of inclination of the flat 
tube, the Colburn factor j increases. This can be explained by increasing the angle of inclination, the 
area of cross-section of the fluid flow decreases. Therefore, the air velocity increases leading to an 
increase in Nusselt number. In addition, the air is in contact with more inclined flat tube surface than 
that of horizontal flat tube, resulting in enhanced heat transfer due to the impingement heat transfer. 

At Re = 1600, when increasing the tilt angle from 0 to 45, the factor j increases from 0.01 to 0.0115, 
i.e., 15%. 
 

 
Fig. 6. Effect of flat tube angle and Reynolds number on Colburn j-factor 

 
Figures 7 and 8 present temperature contours at different cross-sections to clarify the heat 

transfer mechanism. Figure 7 extracts the temperature at the midplane, i.e., the symmetry plane. It 

can be clearly seen that the angle of inclination 45 achieves the highest heat transfer rate, i.e., the 
outlet air temperature is much higher than the other cases. In addition, it can be seen that the 
inclined flat tube acts as a guide, causing the higher air temperature to concentrate at the top of the 
outlet. Figure 8 shows the outlet temperature distribution between the two fin surfaces. The highest 
temperature occurs at the maximum angle of inclination. The trend of hot air moves upwards with 
the angle due to the guide vane effect of the inclined flat tube. From this figure, it is perceived that 
the areas with small air temperature need improvement measures to ensure uniform temperature 
distribution.  

Figure 9 shows the influence of the independent parameters on the friction factor. It is clear that 
as the Re number increases, the friction factor decreases. The friction factor increases significantly 

as the flat tube inclination angle increases. When the tilt angle increases from 0 to 45, the friction 
factor increases by about 68%. Figures 10 and 11 show the increase of air velocity and pressure with 
the angle of inclination. As the tilt angle increases, the jet impingement area increases. It can be 
clearly seen in Figure 10 that at the maximum angle of inclination, the low air velocity area behind 
the first two rows of tube is larger than that of the two rear rows. This may conclude that the first 
rows of tube have a lower convection heat transfer coefficient than the latter rows as shown in the 
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literature [22]. High velocities in the upper and lower regions of a tube lead to very low pressures in 
these regions in the case of the greatest inclination. 

 

 
Fig. 7. Temperature contours at Re = 1300 

 

 
Fig. 8. Temperature contours on outlet at Re = 1300 
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Fig. 9. Effect of flat tube angle and Reynolds number on friction factor 

 

 
Fig. 10. Velocity magnitude contours at Re = 1300 
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Fig. 11. Static pressure contours at Re = 1300 

 
From the above analysis, it can be observed that when increasing the tilt angle, both heat transfer 

and pressure loss increase. To choose the pertinent angle of inclination, it is necessary to evaluate 
the hydro-thermal performance index. This index is defined as the ratio between the Colburn factor 
j and the friction factor f: j/f1/3 [23]. Figure 12 shows the performance index with independent 
parameters.  
 

 
Fig. 12. Effect of flat tube angle and Reynolds number on performance index 
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The largest index can be seen at the smallest Reynolds number and inclination of 15. At small Re 
and small tilt angle, the increase in heat transfer is slightly higher than the increase in pressure loss, 
thus the index is highest. As the Re number and inclination angle are increased, the pressure loss 
increases dramatically. Therefore, the index decreases. The maximum value of the index is around 
0.0405. 
 
4. Conclusions 
 

The 3D numerical investigation using the standard k- turbulence model for compact heat 
exchanger having inclined flat tubes was carried out in this study. The thermal and hydraulic 
parameters are evaluated when changing the Reynolds number from 1300 to 1600 and the 

inclination angle of the tubes from 0 to 45. The main results from the study are drawn as follows 
 

i. The Colburn factor increases by 15% and the friction factor increases by 68% when the angle 
of inclination increases from 0 to 45. 

ii. The inclined flat tube acts as the guide vane, causing the hot air to concentrate at the top of 
the outlet. 

iii. The maximum thermohydraulic performance index of 0.0405 is achieved at Re = 1300 and the 
inclination angle of the flat tube of 15. 

iv. The areas of poor heat transfer shown in the inclined flat tube configurations are proposed 
for further study to achieve uniform temperature distribution at the outlet. 
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