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Warming water temperatures due to climate change pose a significant threat to 
numerous aquatic species. This study was conducted to examine the oxidative stress 
level on enzyme activities of tilapia blood plasma subjected to heat stressed. Thermal 
exposure was conducted based on preliminary study at 31 °C and subjected to gradual 
acclimation (1˚C/8h) from 28 to 31˚ for 14 days. Result showed that all the antioxidant 
enzymes level of superoxide dismutase (SOD), catalase (CAT) and glutathione-S-
transferase (GST) on blood plasma were significantly (p<0.05) increased with the 
duration of exposure. The increasing of antioxidant levels indicating possible negative 
effect on physiological performance and fitness, which in turn implicates potential 
threat of increased global temperature to aquaculture production. 
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1. Introduction 
 

Freshwater fishes are known as ectothermic species that are sensitive to extreme environments. 
Freshwater fish react directly and indirectly towards any disruptive change in water quality 
parameters. Exposure to prolonged low water quality result in the alteration of internal substances, 
cell structure properties as well as metabolisms. Studies have shown that the effects of increased 
global water temperature have been dispersing throughout the aquaculture industry around the 
world [1], causing a negative socio-economic impact regarding global food production [2]. Oxidative 
stress is described as a stress mechanism in fish biology involving reaction components called reactive 
oxygen species (ROS), several reactive molecules and free radicals derived from molecular oxygen[3]. 

The occurrence of oxidative stress due to inefficient and insufficient of antioxidant defence 
system associated with the imbalance production of ROS during stress condition leads to energy 
utilisation in fish to cope with or tolerate environmental stress [4]. 
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    To date, the effect of temperature on freshwater tropical fish has only been experimented in a 
few commercial fish such as goldfish (Carassius auratus) [5] and grass carp (Ctenopharyngodon 
idellus) [6]. Studies on oxidative stress have been focused more on marine fish such as gilt head 
bream (Sparus aurata) [7], greater amberjack (Seriola dumerili) [8] and seabass, (Dicentrarchus 
labrax) [9]. Other studies focused on the effects of toxic chemical such as glyphosate in silver catfish 
(Rhamdia quelen) [10], endosulfan in tilapia Mosambica (Oreochromis mossambica) [11], malathion 
in rohu (Labeo rohita) [12] and atrazine in grass carp (Ctenopharyngodon idella) [13]. 

According to Parihar et al., [14], superoxide dismutase is the first defence system against 
oxidative stress by dismutating the superoxide radical. The defence reaction produces a nonreactive 
hydrogen peroxide in aqueous form that reacts actively with other superoxide radicals and non-
radicals. This uncontrolled reaction is a precursor to generate more reactive ROS radicals. Hence, a 
catalase will neutralise the hydrogen peroxide to generate water and oxygen molecules. 
Furthermore, glutathione-S-transferase (GST) helps in discharging organic anions and other 
hydrophobic compounds from xenobiotics. The multitalent GST was suggested to be a biomarker for 
detoxification during fish stress [15]. 

Therefore, any study on the thermal stress effect on physiological changes of fish through 
oxidative stress mechanism towards its surrounding ecosystem would provide a more valuable 
information for industrial uses. The evaluation of oxidative stress involves the determination of 
regulation activity of antioxidant enzymes i.e., superoxide dismutase (SOD), catalase (CAT) and 
glutathione-S-transferase (GST). Findings on these oxidative parameters in Oreochromis sp. will 
provide some useful information for biomarker use in line with the current climate change issue. It is 
hypothesized that thermal stress will affect activity thus influences the interaction of antioxidant 
enzymes to counteract ROS over time. 
 
2. Methodology  
 

This study was conducted at the Aquaculture Research Centre, under Department of 
Agrotechnology and Bio-Industry, Polytechnic Sandakan Sabah. Tilapia, Oreochromis sp. with body 
weight of 450.0 ± 15 g and 25.0 ± 3.3 cm total length were sampled from the pond culture of 
Polytechnic Sandakan Sabah. At the sampling time, the water quality parameters of the water at the 
pond culture were recorded by using YSI 556 MPS (USA) with range between 26–28 °C, 3.5–5 ppm, 
6.8–7.3 pH, 6.5–7.0 ppt for temperature, dissolved oxygen, pH, and salinity, respectively. Healthy fish 
were brought back and acclimatized in the recirculating fiberglass aquaculture system (RAS). Fish 
were fed at 3.0% of their body weight (BW) twice daily with commercial pelleted feed (Star Feedmills 
Sdn Bhd).  

 
2.1 Experimental Design: Fish Sampling and Plasma Extraction 

 
The lethal temperature (LT50) and loss of equilibrium temperature, also known as thermal 

tolerance limits (24h) or critical thermal maximum (CTmax) were previously experimented to be 33.6 
°C and 31.6 °C [16] determined from Beitinger et al., [17], Ospina and Mora [18] and Souchon and 
Tissot [19] respectively. Six random fish samplings were conducted for control group and at day 1, 7 
and 14. 
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Water quality parameters during the treatment were measured and recorded using 
multiparameter YSI 556 MPS (USA). Individual fish was anesthetized with NIKA Transmore (0.1 ml/L) 
prior to blood collection. Approximately 2 mL of blood was collected from the gills by using 23 G 
needle and allocated into 2 vacutainer tubes. Plasma samples were obtained by centrifuging the 
blood in heparinised tube (2,000 rpm) at 4 °C for 20 min [20]. The obtained supernatant was stored 
and frozen at -20 °C until analysis. Blood plasma was analysed for total protein [21] content before 
being subjected to an antioxidant assay. 

 
2.2 Superoxide Dismutase 

 
 Superoxide dismutase (SOD) was assayed using McCord and Fridovich [22]. Twenty μL plasma 

was added to 220 μL freshly prepared buffer solution containing 2-(4-iodophenyl)-3-4(4-
nitrophenyl)-5-(2,4-disulfophenyl)-2H- tetrazolium, monosodium salt (pH 7.0) and 10.7 mM EDTA 
(Sigma, USA). The reduction of oxygen reaction was related to xanthine oxide (XO) (Sigma, USA) that 
inhibited by SOD. Four vials (blank 1 contained 20 μL double-distilled water (ddH20) and 20 μL 
enzyme; blank 2 contained 20 μL sample and 20 μL dilution buffer; blank 3 contained 20 μL dilution 
buffer and 20 μL ddH2O; blank 4 contained 20 μL sample, 20 μL dilution buffer and 20 μL enzyme) 
were prepared according to the method provided. Then, 200 μL of buffer solution was added to all 
the vials and incubated at 37 °C for 20 min. Absorbance of water soluble formazon in blue colour 
resulting from the XO reaction and reduction of SOD was measured using a microplate 
spectrophotometer at 450 nm. Levels of SOD activity were calibrated against SOD standard curve and 
expressed as U.min-1 of total protein. The calculation of SOD activity is as follows: 

 

SOD activity = 
(Absorbance blank 1−Absorbance blank 3)−(Absorbance of sample−Absorbance of blank 2)

(Absorbance of blank 1−Absorbance of blank 3)
 × 100 

 
2.3 Catalase 

 
Catalase activity was assayed using spectrophotometric method from Beers and Sizer [23] using 

4 mL quartz cuvette. The reaction was measured based on the reduction of hydrogen peroxides to 
water and hydrogen. Eighty μL tissue extract was added to 2.92 mL of 0.030% v.w-1 hydrogen 
peroxide, and absorbance was measured at 240 nm at 1.5 min interval. Bovine catalase (Sigma, USA) 
diluted in 100 mL of 50 mM phosphate buffer was used as standard. The activity was calculated using 
the molar extinction coefficient for hydrogen peroxide of 0.040 nmol.L-1. The calculation for catalase 
activity was expressed as U.mg-1.min-1 of total protein as follows: 

 

Catalase activity =
(Absorbance/min)

(0.040 x mL protein)
  

 
2.4 Glutathione-S-Transferase 

 
Glutathione-S-transferase (GST) was assayed as described by Habig et al., [24] using a microplate 

reader. The reaction was measured based on the conjugation of 1-chloro-2,4-dinitrobenzene (CDNB) 
(Sigma, USA) with reduced glutathione (GSH) (Sigma, USA) catalyzed by GST. The reaction master mix 
was freshly prepared by mixing 9.8 mL of Buffer Dulbecco, 0.1 mL of 200 mM reduced glutathione 
solution and 0.1 mL of 100 mM CDNB (1-chloro-2,4-dinitrobenzene) in 95% ethanol solution.  
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A total of 180 μL of reaction master mix was allocated to each well in microplate and 20 μL of 
sample was added directly to the microplate and mixed well. The absorbance at 340 nm can be 
determined using the extinction coefficient of 0.0053 nm over a period of 6 min after a lag time of 1 
min. Levels of GST activity were calibrated against GST standard curve and expressed as nmol.mg-

1min-1 of total protein.  
 
The calculation for GST activity is as follows: 

 

GST activity =
(Absorbance/min)

(0.040 x mL protein
 x 

0.2mL

0.02mL
 ÷ total protein   

 
2.5 Data Analyses 

 
The data collected were analysed as mean ± SE (standard error), sample performances were 

checked primarily using Shapiro-Wilk Test as well as homogeneity using Levene Test for normality 
satisfaction. One-way analysis of variance (ANOVA) was performed to determine the effects of the 
time period (day exposure) and their interactions on oxidative stress responses (lipid peroxidation, 
superoxide dismutase, catalase, glutathione-S-transferase) in muscle, liver and kidney parameters. A 
post-hoc least significant difference (LSD) test and Tukey-Kramer HSD post hoc test was used to 
separate all means which differ among groups. Relationship between the variables were analysed 
through a Person Correlation test. Statistical analyses were performed using IBM SPSS Statistics 
version 27.0, and the level of significance for all tests was set at p < 0.05. 

 
3. Results  
3.1 Antioxidant Activity 
 

The mean SOD, CAT and GST activities in the blood plasma of tilapia Oreochromis sp. for control, 
days 1, 7 and 14 is shown in Figure 1. The mean SOD in the blood plasma on control, days 1, 7 and 14 
were 29.97 ± 4.90, 38.59 ± 4.45, 44.78 ± 6.35 and 56.22 ± 5.31 Umin-1 of total protein, respectively, 
indicating gradually increased activities with increased duration of exposure. The SOD level was 
significantly higher (p < 0.05) on day 14 compared with control, days 1 and 7. However, there was no 
significant difference (p > 0.05) between control, days 1 and 7.  

The mean CAT in the blood plasma on control, days 1, 7 and 14 were 24.66 ± 1.10, 29.50 ± 1.36, 
28.38 ± 1.67 and 33.92 ± 1.29 U.min-1 of total protein, respectively, indicating gradually increased 
activities with increased duration of exposure. The results showed significantly higher (p < 0.05) CAT 
activity in blood plasma on day 14 compared with control, days 1 and 7. The mean GST in the blood 
plasma on control, days 1, 7 and 14 were 14.61 ± 0.80, 16.76 ± 2.12, 17.46 ± 1.40 and 21.40 ± 1.95 
nmol.min-1 of total protein, respectively, indicating gradually increased activities with increased 
duration of exposure. The GST activity levels on days 7 and 14 were significantly higher (p < 0.05) 
compared with day 1 and control. However, the GST activity levels on days 7 and 14 did not differ 
significantly (p>0.05). There was a significant positive correlation between GST level with SOD and 
GST, with r coefficient 0.305 and 0.455, respectively.  
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Fig. 1. Superoxide dismutase (SOD, U.min-1 of total protein), catalase (CAT, U.min-1 of 
total protein) and glutathione-S-transferase activities (GST, nmol.min-1 of total protein) 
of tilapia exposed to heat stressed with the duration of exposure (means ± SE);* denotes 
(p<0.05) between groups with similar enzyme 

 
Figure 2 shows the relationship between the duration of exposure and antioxidant enzyme 

activities (SOD, CAT, GST) in blood plasma of tilapia Oreochromis sp. The enzyme SOD (R2 = 0.467), 
CAT (R2 = 0.334) GST (R2 = 0.305) activity showed a positive relationship with the duration of 
exposure. As the duration of exposure increased, all the enzymes increased in activity. The CAT (= 29 
U.min-1 of total protein) and GST (= 18 nmol.min-1 of total protein) activities were almost at the same 
level, and it was about half of that of SOD (= 42 U.min-1 of total protein) activity. 
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Fig. 2. Plot activities of superoxide dismutase activities (SOD, U.min-1 of total protein) (solid 
rectangle), catalase activity (CAT, U.min-1 of total protein) (solid triangle) and glutathione-S-
transferase (solid diamond) (GST, nmol.min-1 of total protein) of blood plasma tilapia 
Oreochromis sp. 

 
Fish may be threatened by the rising temperatures as a result of global warming. Many organisms 

adapt to climate variability through alterations of internal body system including the regulation of 
physiological defence system and integration of oxidative stress mechanism [4].  

Heat stress influences the cellular body to produce reactive oxygen species (ROS), thus the 
prolonged stress consequently increases the amount of ROS thus showing a significant activity of 
antioxidant defence system in the biological functions of organisms. Excessive ROS accumulation in 
membrane systems could cause a membrane disturbance that led to membrane leakage and 
consequently disturbed all the regulation cycles and induced physiological disturbances [25,26].  

Antioxidant enzymes can be found in almost all physiological fish systems especially in blood and 
organ tissues [27]. In our study, we found that these enzymes (SOD, CAT and GST) production tend 
to increase significantly with increased temperature. The results were in alignment with Vinagre et 
al., [28] which reported higher activities of SOD and CAT of rock goby (Gobius paganellus). The 
significant increase of antioxidant defence activities may indicate that this tissue is highly sensitive 
to thermal stress, in which its activities in all tissues can be used as bioindicator of oxidative damage.  

The increase of SOD activity was probably associated with the activation of SOD or the ability of 
the cells to scavenge free radicals. Generally, most of fish locomotory system possess on anaerobic 
metabolism, which use high amount of oxygen consumption [29]. Therefore, high amount of SOD 
activity in blood is probably associated with high reduction of oxygen to superoxide radicals [30]. 
High activity of SOD will in turn accumulate some amount of hydrogen peroxide over a short period, 
thus induce the antioxidant activity in fish blood [31]. From our observations, we found that, at high 
temperature, fish were passive. This suggested that metabolic system was able to function 
continuously and probably develop a new adaptation system [31].  
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From our experiment, catalase activity also was slightly increased in activity. A study by Madeira 
et al., [7] on Sparus aurata showed increased catalase with the increasing water temperature, which 
suggested that it could be the main scavenger tissue to counteract ROS in the physiological system. 
Typically, the peroxidase activity of catalase reacts at relatively low concentrations of hydrogen 
peroxide [32] into oxygen and water. Besides superoxide dismutase (SOD) and catalase (CAT), 
glutathione-S-transferase (GST) are also important components in the oxidative stress defence 
system of fish [33]. 

Our results showed slightly increased GST activity in blood plasma. This enzyme catalysis the 
terminal steps in oxidative defence pathway. It is possible that at increasing water temperature, the 
increase in GST activity is probably attributed to the functional defence system. Similarly, an increase 
in GST levels was also observed in Carassius auratus [25] exposed to high temperature. Similarly, a 
study carried out by Madeira et al., [7] demonstrated that temperature had a direct effect on the 
GST activity in blood tissue. The differences of antioxidant activity enhanced by enzyme instability 
may explain heterogeneity among the various tissues supporting the current data [31]. A 2-fold 
increase in GST activity in blood plasma suggested a higher accumulation of free radical production 
in blood plasma. These results also indicate that blood is an effective tool in elimination and 
detoxification of ROS. High antioxidant activity is very important for the improvement of 
counterbalance activities in stress tolerance [15].  

An increase in SOD, CAT and GST levels in blood plasma, which is considered as metabolites that 
derived from various part of regulation system included from the organ that needs high oxygen 
consumption rate and high level of antioxidant defence system [34,35]. As all the antioxidant 
activities in blood showed the cell injury from various cell, the level may further increase as the 
increased of the degree injury of the cells with further increased of day exposure. 
 
4. Conclusions 
 

In this context, these results are significant in the context of climate change and its impacts on 
fisheries and aquaculture because over induction of oxidative stress due to water warming can 
induce health problems, mortality and shortened lifespan of fishes. Future studies on the 
mechanisms of stress response such as cell signalling and gene expression, are needed to investigate 
the adaptation mechanism in tilapia exposed to high water temperature. Besides, investigating the 
physiological responses of fish exposed to a longer experimental duration will provide us information 
on the impacts of global warming on fish production. 
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