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ABSTRACT 

Exploration of unconventional resources and the reuse of industrial by-products are critical for advancing 

environmental sustainability. In this study, we propose a sequential mechano-activation and sol-gel method 

to synthesize silica gel (SG) from coal fly ash (CFA). The raw CFA used in this study contains 49.54% SiO₂, 

with 99% of the particles measuring approximately 210 nm in size, as determined by XRF and Particle size 

analysis. Our findings indicate that the SG surface is rich in SiO- species, evidenced by the presence of silanol 

(Si-OH) and siloxane (Si-O) groups in FTIR and Raman analyses. XRD analysis confirmed the amorphous 

nature of the SG produced from CFA. Additionally, the SG obtained had a particle size of around 97 nm for 

90% of the population. This work addresses the issue of coal waste management and provides promising 

material for wide application. 
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1. Introduction 

Exploration of unconventional resources and reusing industrial leftovers has become critical in 

the continuously shifting encounter of environmental sustainability. Coal fly ash (CFA), which is a 

byproduct of coal combustion in power plants [1-4] has long been viewed as an environmental 

problem due to its large volume and tendency to leak hazardous substances [4,5]. CFA consists 

primarily of tiny, powdery particles that are mostly spherical, with solid or hollow structures, and an 

amorphous composition. It exhibits low bulk density and possesses a substantial amount of distinct 
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surface area [6,7]. It was reported that 750 million tons of CFA are generated annually, with at least 

75% not being managed in an environmentally friendly way [8]. 

The present attention has switched to the latent potential hidden in CFA due to its high aluminum 

(Al) and silicon (Si) content, which might be a beneficial supplemental resource of refined alumina 

and silica if economically viable technologies can be devised. According to ASTM C618, CFA is 

categorized into two classes based on its Si, Al, and Fe oxide content: C and F grades. CFA grade C 

has a high calcium concentration, whereas grade F has a high silica content [6]. Rosita et al. reported 

that in a coal power plant in Indonesia specifically, CFA type F might contain chemical components 

such as SiO2 (50.6%), Al2O3 (23.6%), Fe2O3 (10.9%), CaO (5.1%), and MgO (3.8%), making it an 

appealing source for silica derivative production [9]. This growing interest in extracting silica from 

CFA is an exceptional opportunity to solve environmental problems connected with CFA disposal 

while contributing to the circular economy by converting industrial waste into a valuable and 

versatile commodity. 

The composition of silicates in CFA is a pivotal factor influencing its reactivity and suitability for 

diverse applications. While silicates exist in both amorphous and crystalline forms within CFA, with 

approximately 70% constituting quartz, mullite, and sillimanite in crystalline structure [10,11]. It is 

noteworthy that only the amorphous counterparts demonstrate reactivity with alkali and play a 

crucial role in extraction efficiency. In contrast, crystalline silicates remain inert, exhibiting rare 

reactivity with the acids or bases under normal conditions [11]. Eventhough silica sand own high 

percentage of silica [12], around 95%, agricultural bio-resources are potential to consider. Several 

studies have successfully acquired silica from various agricultural bio-resources, including sugarcane 

[13,14], rice husk [15,16], maize cob [17,18], bagasse [19,20], clay [21], and coffee husk ash [22,23] using 

certain methods such as chemical vapor condensation (CVC) [24], reverse microemulsion (RME) [25], 

precipitation [26], and the sol–gel method [6,14]. 

The sol-gel method, involving low-temperature chemical reactions in a solution, stands out for its 

ability to create an inorganic polymer network [27]. Through the condensation of silicate tetrahedrons 

with oxygen, siloxane linkages (Si-O-Si) and nanometer-sized particles are formed, resulting in a gel 

with exceptional purity and homogeneity [28]. Despite its widely acknowledged cost-effectiveness 

and efficiency, the sol-gel approach necessitates expensive raw materials and employs high-

temperature furnaces [29,30]. 

In our study, we propose a novel approach wherein CFA, a source of silica, undergoes mechanical 

treatment, specifically ball milling, to enhance surface area and reactivity [31]. Subsequently, the sol-

gel process is employed, wherein inorganic and amorphous polymers form through the condensation 

of silicate tetrahedrons. This technique entails the extraction of silica from CFA in the form of sodium 

silicate, followed by acid treatment to convert the silica into a gel [11,32,33]. The amorphous silica in 

CFA, recognized for its solubility in solutions with pH values exceeding 10 [34], is solubilized by 

treating it with a sodium hydroxide solution. The resulting solubilized silica, a soluble silicate, holds 

promise for varied applications. 

Our research endeavours to harness the efficacy of the sol-gel process to extract amorphous silica 

from CFA, presenting a viable and cost-effective avenue for the utilization of CFA while contributing 

to sustainable practices and resource repurposing. This study aspires to contribute significantly to the 

ongoing discourse on innovative resource utilization and environmentally conscious methodologies. 
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2. Methodology 

2.1. Materials 

The coal fly ash (CFA) used in this study was sourced from an Indonesian coal power plant. The 

CFA underwent a series of treatments, beginning with drying in an oven at 100°C overnight to 

eliminate water content. The second treatment involved mechanical activation through ball milling 

for 24 hours, using a mass ratio of 1:20 w/w (CFA to ball). The additional chemical components used 

in this research included NaOH (Merck), HCl (Merck, 37%), and H₂SO₄ (Merck, 97%).  

 

2.2. Methods 

Initially, CFA underwent magnetic separation to remove magnetic substances. Subsequently, other 

metal contents, particularly aluminium (Al) and iron (Fe), were removed by adding sulfuric acid 

(H₂SO₄). The extraction of amorphous silica from Indonesian CFA employed a sol-gel, hydrothermal 

template-free method. In a three-neck reflux flask, 30 g of Indonesian CFA samples were introduced 

to 150 mL of 5 M NaOH and heated at 100°C for 3 hours using a reflux condenser system. This solution 

then underwent filtration using Whatman-41 filter paper, and the residue was washed with deionized 

water. The filtrate was allowed to cool and was then titrated with 1 M HCl to a pH range of 7-8. The 

mixtures were left to age for 24 hours [2,6,11]. The powder obtained was dried in an oven at 1000C 

for 4 hours and lastly calcined at 6000C under air condition.  

 

2.3. Characterisations 

This comprehensive set of characterizations provides detailed insights into the elemental 

composition, crystallographic structure, surface morphology, chemical bonds, and physical 

properties of the synthesized amorphous silica from CFA. The elemental composition of CFA was 

initially determined using X-ray fluorescence (XRF). X-ray diffraction (XRD) was performed using a 

Rigaku MiniFlex 600 with a Cu-Kα source at 40 kV, with the 2θ angle ranging from 5° to 70°. The 

chemical bonds in the CFA and amorphous silica were analyzed by Fourier transform infrared 

spectroscopy (FTIR, Thermo Scientific Nicolet iS10). Raman spectroscopy was conducted using a 

DXR3xi Raman imaging microscope from Thermo Fisher Scientific, with the laser power set to 1 mW, 

an exposure time of 0.0222 s, and 35 scans. 

To analyze the size distribution and zeta potential, a particle size analyzer (Zetasizer Pro Blue, 

Malvern) was employed based on the dynamic light scattering method. This instrument is capable of 

determining particles in the range of 0.3 nm to 10 μm. 

 

3. Results  

3.1. Chemical Composition of CFA 

The chemical compositions of the CFA were determined using XRF analysis, and the results are 

presented in Table 1. SiO2, Al2O3, CaO, SO3, TiO2, K2O, and P2O5 were identified as major compounds 

in the chemical composition of CFA. Notably, the silica content was found to be 49.54%. 
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Table 1 

XRF analysis of CFA 

Element Concentration Unit Compound Concentration Unit (%) 

Si 42.689 % SiO2 49.540 % 

Al 25.916 % Al2O3 30.977 % 

Fe 16.938 % Fe2O3 9.469 % 

Ca 9.131 % CaO 5.683 % 

S 1.908 % SO3 2.234 % 

Ti 1.477 % TiO2 1.029 % 

K 0.781 % K2O 0.429 % 

Mn 0.287 % MnO 0.148 % 

P 0.154 % P2O5 0.167 % 

 

Prior to extraction, the CFA underwent a preliminary mechanical treatment involving ball 

milling, acquiring a finely sized CFA, as depicted in Figure 1(a). The particle size distribution 

indicates that 99% of the CFA particles are approximately 210 nm in size, with a polydispersity index 

(PI) of 0.48. The zeta potential of the CFA is measured at -7.98 mV, as depicted in Figure 2(a). The 

mechano-activation treatment provides the necessary energy to reduce the particle size and improve 

homogeneity [31]. It is essential to recognize that the quantity and size of CFA particles can 

significantly influence mass transfer efficiency during the extraction process. The reduction in particle 

size increases the surface area, thereby enhancing the contact between the CFA and the extraction 

reagents. This increased surface area facilitates better interaction and dissolution of the silica 

components. 

 

 
Fig. 1. Particle size analysis of (a) CFA and (b) SG 

 

3.2. Characterisation of Silica Gel (SG) 

The obtained SG exhibits a particle size of approximately 97 nm for 90% of the population, as 

depicted in Figure 1(b). This uniform particle size distribution is indicative of a controlled synthesis 

process. Additionally, the SG has a high negative zeta potential of about -24.5 mV as shown in Figure 

2(b), which signifies enhanced colloidal stability in solution. The high negative surface charge is 

primarily attributed to the presence of deprotonated silanol groups (SiO⁻) on the surface, which helps 

prevent particle aggregation and ensures stable dispersion [35]. 
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Fig. 2. Zeta potential of (a) CFA and (b) SG 

  

Figure 3(a) displays the Raman spectra of SG synthesized from coal fly ash (CFA). The Raman 

analysis reveals five significant peaks located at 480 cm⁻¹, 600 cm⁻¹, 800 cm⁻¹, 980 cm⁻¹, and 1600 cm⁻¹. 

The peaks at 480 cm⁻¹ and 800 cm⁻¹ are attributed to the D1 defect mode of silica, which is associated 

with tetracyclosiloxane rings and oxygen vibrations perpendicular to the Si-Si bond line, respectively. 

The peak at 600 cm⁻¹ corresponds to the D2 defect mode, which is indicative of three-membered 

cyclosiloxane rings. Additionally, the peak at 980 cm⁻¹ is linked to surface silanol groups (Si-OH), 

while the peak at 1600 cm⁻¹ is related to the bending vibrations of O-H bonds, typically due to 

adsorbed water or hydroxyl groups [36-38]. 

Additionally, Figure 3(b) presents the FTIR spectra of the SG. The FTIR analysis identified 

prominent peaks at 1050 cm⁻¹ and 800 cm⁻¹, corresponding to the asymmetric and symmetric 

vibrations of inter-tetrahedral oxygen atoms in Si-O-Si (siloxane), which forms the primary structure 

of SiO₂ [34,39,40]. The presence of siloxane is crucial as it is a key functional group in the final product, 

contributing to the structural integrity and properties of the SG [34,41]. 

In addition to the siloxane peaks, FTIR analysis revealed peaks at approximately 3400 cm⁻¹ and 

1630 cm⁻¹, corresponding to the stretching and bending vibrations of hydroxyl groups (-OH) attached 

to the SiO₂ framework, forming silanol groups (Si-OH) [34,39,42]. However, in our sample, these 

peaks were notably weak, likely due to the calcination process, which effectively removes moisture 

content and silanol groups from the SG. The high-temperature treatment during calcination 

dehydrates the silica surface, eliminating adsorbed water and reducing the number of surface 

hydroxyl groups, resulting in the diminished intensity of these O-H related peaks [43].  The removal 

of silanol groups during calcination enhances the stability of the SG. Additionally, the high siloxane 

content contributes to the structural integrity and robustness of the SG. 
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Fig. 3. Spectra of SG (a) Raman spectra showing the overall spectral 

profile; and (b) FTIR spectra displaying the characteristic peaks 

 

The XRD pattern of the synthesized SG is presented in Figure 4, revealing a distinctive broad peak 

at 2θ = 22°. This broad and diffuse scattering suggests that the SG predominantly has an amorphous 

structure, indicating a lack of long-range crystalline order. The absence of additional sharp peaks in 

the XRD pattern confirms that there are no other crystalline phases present in the sample. 

Several previous studies have demonstrated that silica synthesized from rice husk ash and fly ash 

typically exhibits a primarily amorphous structure [6,34]. This is largely due to the specific chemical 

processing involved. NaOH is known to selectively dissolve amorphous silica, which is then 

precipitated during the synthesis process [6,44]. This selective dissolution and precipitation process 

ensure that the final product is rich in amorphous silica, free from crystalline contaminants. The 

amorphous nature of the synthesized SG is advantageous for various applications, including 

adsorption and catalysis, as it provides a high surface area and abundant active sites. The consistency 
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of the amorphous structure, as confirmed by XRD analysis, underscores the effectiveness of the sol-

gel synthesis method employed in this study. 

 

 
Fig. 4. XRD pattern of SG 

 

4. Conclusions 

This study demonstrated that a sequential mechanoactivation and sol-gel approach can 

effectively produce SG with desirable properties from coal fly ash (CFA). The resulting SG exhibits 

an amorphous structure, with a particle size of approximately 97 nm for 90% of the population and a 

zeta potential of around -24.5 mV. The characterization analyses confirmed the presence of functional 

groups such as silanol (Si-OH) and siloxane (Si-O), which are crucial for adsorption applications. The 

successful synthesis of SG from CFA highlights the potential of utilizing coal fly ash, a byproduct of 

coal combustion, as a valuable resource for producing high-performance materials. This approach 

not only addresses the environmental challenge of coal ash disposal but also provides an effective 

solution for water treatment through adsorption. The study underscores the feasibility of 

transforming industrial waste into useful products, contributing to environmental sustainability and 

resource recovery. Future work should focus on optimizing the synthesis process, scaling up 

production, and exploring the adsorption capabilities of the synthesized SG for various pollutants in 

different environmental conditions. 
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