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ABSTRACT 

Plasma medium is often referred to as the fourth state of matter, since it has properties very much different 

from those of the gaseous, liquid, and solid states. The simple and available plasma medium in the market is 

fluorescent lamp. In standard fluorescent lamps, mercury vapor pressure plays one of the key roles to define 

electron density. In view of the fact that, electrical conductivity of plasma depends on electron density and 

electron-neutral collision, the vapor pressure plays important role in determining plasma electrical 

conductivity too, which is important properties in determining the performance of plasma medium if they 

are used to radiate microwave signals. Therefore, as reported in this paper, the electron-neutral collision is 

estimated by conducting experiments and simulations. It was concluded from the results that the electron-

neutral collision of commercially available plasma medium is 900 MHz. 
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1. Introduction 

Plasma is a dispersive material which offers electrical properties when electromagnetic waves are 

applied to it. As a frequency dependent material, it also has these properties; electrical conductivity, 

electrical permittivity, and magnetic permeability. These electrically controlled properties allow the 

exploration of plasma as one of material options in designing antennas. By understanding the relation 

between plasma medium and incoming electromagnetic waves, it may lead to a promising 

development of plasma antennas [1-17]. Plasma medium is formed by ions and electrons; therefore, 

it is necessary to understand the interaction between plasma medium and electromagnetic waves. 

One should understand the plasma parameters [2,18,19] such as plasma conductivity [20,22], plasma 

critical frequency [21] and plasma permittivity [23,26]. The plasma discussed in this paper is an 

assumption of homogenous plasma.  

https://doi.org/10.37934/jrnn.15.1.2332
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There are two types of plasma which are collision-less and collisional plasmas. In this research 

work, the plasma is modeled as a cold-plasma based on the Drude model. The effect of electron 

collision is associated with the model. The model is developed to represent the commercially 

available plasma source used in experimental activities. The plasma source is assumed to have low 

pressure argon and mercury vapor encapsulated in pyrex glass tube. The model is developed in CST 

software with the assumption that the isotropic plasma has uniform intensity in all directions. 

Regarding the Drude model, the epsilon infinity is equal to 1 thus simplifying the permittivity 

equation as derived in Equation 1, with an introduction of 𝑣𝑐𝑜𝑙 (collision effect). 

 

𝜀𝑟 = (1 −
𝑛𝑒𝑞2

𝜔𝜀𝑜𝑚𝑒(𝜔 − 𝑗𝑣𝑐𝑜𝑙)
) = (1 −

𝜔𝑝
2

𝜔(𝜔 − 𝑗𝑣𝑐𝑜𝑙)
) (1) 

 

Knowledge of the dependence of the effective electron-neutral collision in noble gas such as argon 

is very important to understand many plasma processes especially for their fundamental and 

applications.  This type of collision frequency is often referred to as evaluate the energy transfer 

between particles. The collision frequency that occurs in gases is important in radio frequency field 

as highlighted in [23]. Collisional plasmas can be divided into two cases, which are partially ionized 

plasmas and fully ionized plasmas [1]. When discussing partially ionized plasmas, the dominant 

collisional process is between electrons and neutrals. In general, as the partially ionized plasma is 

associated with low pressure plasma, collisions with neutral particles dominate all other elastic 

processes in low pressure discharge [23,24].  

In 1981, the effective collision frequency of electrons in noble gases was studied in [25]. The 

Maxwellian distribution of electron particles was assumed to conduct the study. The group has 

compared their results with other previous published studies within the year of 1960 and 1978. The 

estimation was conducted for the noble gases such as helium, neon, argon, krypton and xenon. The 

following are the equations to estimate effective collision frequency between electrons and argon 

atoms [24]. 

 

𝑣𝑐𝑜𝑙 = 𝑁𝐴𝑅(2.58 × 10−12𝑇𝑒
−0.96 + 2.25 × 10−23𝑇𝑒

2.29)  
𝑓𝑜𝑟 (6 × 102𝐾 ≪ 𝑇𝑒 ≪ 1.4 ×

104𝐾)  (2) 

 

or 

 

𝑣𝑐𝑜𝑙 = 𝑁𝐴𝑅(3.7 × 10−8𝑇𝑒
−0.315)  

𝑓𝑜𝑟 (2.5 × 102𝐾 ≪ 𝑇𝑒 ≪ 6 ×

102𝐾)  
(3) 

 

where the 𝑇𝑒 is electron temperature and 𝑁𝐴𝑅 is argon gas density. For example, if the 𝑇𝑒 

of fluorescent lamp is known to be 11000K, and the argon gas density is 1023 m-3 at particular 

pressure, thus the estimated 𝑣𝑐𝑜𝑙 will be 4000 x 106 Hz. This paper aims to determine the 

electron-neutral collision frequency of commercially available plasma source so that it can be 

modelled in computer advanced software such as CST for antenna designs.  
 

2. Determination of Electron-Neutral Collision Frequency 

To calculate the approximated value of electron-neutral collision frequency, an experimental 

approach is needed. Complex permittivity that defines plasma characteristics varies with electron-
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neutral collision frequency. As an example, three values of electron-neutral collision frequency which 

have different complex permittivity graph curves are shown in Figure 1. 

 

 
Fig. 1. Curve patterns of plasma complex permittivity for three 

different values of electron-neutral collision frequency (100 

MHz, 900 MHz, and 1700 MHz respectively) 

 

The real permittivity is related to the energy stored in the medium while the imaginary 

permittivity is related to the dissipation or loss in the medium. Therefore, it is quite complex to define 

a model of plasma as its parameters vary with time and frequency.  Yet, an experimental approach 

can be taken to start a process of estimating these parameters. For that reason, in this study, we aim 

to compare the measured and the simulated radiation patterns of the antenna illustrated in  

Figure 2. By doing so, an estimation value of electron-neutral collision frequency can be made.  

In order to have a quick analysis, based on Figure 1. There are two conditions to better understand 

the electromagnetic wave propagation in plasma.  

 

i) when the electromagnetic wave frequency is lower than plasma frequency (𝜔 < 𝜔𝑝), the 

relative permittivity is negative value. Thus, the propagation constant turns into imaginary. 

Therefore, the electromagnetic wave will be reflected as the plasma behaves as conductor 

with low conductivity. If considering collisional plasma, the electromagnetic wave could 

also be absorbed however it depends on electron-neutral collision frequency. 

ii) when the plasma frequency is lower than electromagnetic wave frequency (𝜔 > 𝜔𝑝), the 

relative permittivity of plasma becomes positive, and the propagation constant is real. 

Consequently, plasma has dielectric properties that is electronically controlled. In this case, 

the electromagnetic waves will penetrate the plasma medium and suffer from losses.  
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3. Measurement Setup 

A CFL with a physical height equal to 40 mm from ground plane is expected to reflect 

electromagnetic wave radiated by a monopole antenna as illustrated in Figure 2. The distance 

between CFL’s surface and central monopole antenna resonating at 4 GHz is 0.25λ.   

 

 

 
Fig. 2. Schematic diagram of antenna used for the 

radiation pattern measurement (Unit in mm) 

 

The monopole height is 17 mm and the ground plane dimension is 4λ x 4λ with a thickness of 3 

mm. The frequency is swept from 1.5 GHz to 5.5 GHz to observe the evolution of radiation pattern 

regardless the reflection coefficient other than at resonating frequency. The measurements were 

conducted in Stargate 32 SATIMO anechoic chamber.   

 

4. Result Analysis 

The radiation patterns are compared between measurement and simulation. The simulated model 

is defined with plasma angular frequency equals 43.9823 x 109 rad/s and electron-neutral-collision 

frequency is equivalent to 900 MHz. The first assumption of the collision frequency is made with 

regard to the work of Borg et al., [26,27]. The results for frequency 1.5 GHz, 2 GHz, 2.5 GHz and 3 

GHz are shown in Figure 3, while the results for frequency from 3.5 GHz until 5.5 GHz are shown in 

Figure 4. In Figure 3, the simulated and measured radiation patterns only start to have similar 

patterns at broadside direction from 2 GHz. 
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(a)  (b) 

   

 

 

 
(c)  (d) 

Fig. 3. Measured and simulated radiation patterns, Eθ components. (a) 1.5 GHz (b) 2 

GHz (c) 2.5 GHz (d) 3 GHz 

 
In Figure 4, the results remain comparable between simulation and measurement and continue to 

have similar cardioids shapes until 5.5 GHz. The pattern evolution somehow validates that the 

plasma which has been modeled in simulation is corresponding to actual plasma source.  

This is satisfactory to characterize the CFLs in simulation for the frequency starting from 2.0 GHz 

until 5.5 GHz. The measured and simulated gains are depicted in Figure 5. The figure emphasizes 

that the defined plasma model gives a similar gain curve if compared to the measured one. 
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(a)  (b) 

   

 

 

 

(c)  (d) 

   

 
(e) 

Fig. 4. Measured and simulated radiation patterns, Eθ components. (a) 3.5 GHz (b) 

4 GHz (c) 4.5 GHz (d) 5 GHz (e) 5.5 GHz 
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Fig. 5. The antenna gains in the maximum beam direction 

 

Again, as to reassure the correct electron-neutral collision frequency has been selected. A set of 

simulations was conducted by varying the value of electron-neutral collision frequency from 100 

MHz until 3000 MHz. The results are depicted in Figure 6. 

 

 
Fig. 6. Effect of electron-neutral collision frequency on 

radiation pattern, Eθ components at 4 GHz 

 

As illustrated in Figure 6, the effect of electron-neutral collision frequency on radiation pattern is 

negligible as the frequency increases from 100 MHz to 3000 MHz. Therefore, the plasma model used 

in the simulations is adequate enough to represent actual plasma source in forecasting radiation 

pattern of plasma reflector antenna. 
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5. Summary of Plasma Parameters Estimation 

Based on the isolation experiments, the plasma frequency is estimated to occur at 7 GHz and to 8 

GHz where the transmission of electromagnetic wave in plasma medium is cutoff. In order to come 

out with one fix value of plasma frequency, the 7 GHz frequency is chosen. The measured and 

simulation results showed similar radiation patterns at the broadside direction starting at 2 GHz until 

5.5 GHz when plasma source is placed near to central monopole antenna resonate at 4 GHz. 

Therefore, the experimental results have proven that the plasma model used in the simulation is 

corresponding to actual plasma source when it works as reflector elements. The variation of electron-

collision frequency from 100 MHz up to 3000 MHz has no significant effect on reflector radiation 

patterns. Therefore, the initial value of electron-collision frequency (900 MHz) can be used to model 

the plasma.  

 

6. Conclusions 

This A brief review of plasma as the fourth state of matters has been discussed in the beginning 

of this chapter. Series of plasma equations have been derived starting with the single particle motion. 

Elaboration of plasma equations for the two classifications of plasma which are collision and collision 

less plasma was also explained. The cutoff frequency of plasma is very crucial to define plasma 

working region. As the plasma complex permittivity is also depending on the cutoff and transmitting 

radio frequencies, it is necessary to estimate the values of these two parameters. An experimental 

approach has been taken to get an approximation of plasma cutoff frequency and finally the 

frequency of 7 GHz is chosen to be plasma frequency for this entire work. As the experiments were 

conducted with plasma worked as reflector, the model used in simulation can be used to represent 

the actual plasma source for any reflector configurations. The electron-neutral collision frequency is 

estimated to be 900 MHz and reassurance steps have been taken by varying its value from 100 MHz 

to 3000 MHz and the effect of reflector radiation patterns was observed. In conclusion, there is no 

significant effect occurred and hence the initial value is adequate to represent the actual plasma 

model. The performance of the defined plasma model for reflector antenna configurations will be 

explained in the following chapter. The similarity between measured and simulated results will again 

confirm the defined plasma model. 
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