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1. Introduction 
 

Continuity equations, Navier-Stokes equations and energy equations are the key governing 

equations that dictate the physics of fluid mechanics and thermal sciences, which are instrumental in 

the research of computational fluid dynamics (CFD). From simple creeping flow [1,2] and Couette 

flow [3,4], to the state-of-the-art turbulence modelling [5,6], moving boundaries simulation [7-9], 

nanofluids motion [10,11], multiphase flow [12,13], complex geometry aerodynamic design [14,15], 

wave modelling [16,17] and oceanic engineering [18,19], all these engineering researches fall under 

the purview of these governing equations. 

The governing equations stem from the fundamental principles of Newton’s Laws and Reynold’s 

transport theorem [20,21], which can be expressed in a general form of integral equations. However, 

such a general form is not convenient for the precise analysis down to the scale of fluid element parcels 

[22]. Eulerian approach therefore takes the stage, and it is further developed into the differential form 

of equations which involve tensors and indicial notation for spatial description and flow fields. 

Introduction of continuum mechanics and constitutive laws [23,24] had laid down the cornerstone for 

the derivation of these conservation equations into the governing equations as what we see today. 
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The general description on the formula in CFD could be found in many textbooks [25-27], yet there 

is a lack of detailed derivations in a single work with recent reviews. Hence the paper integrates the 

derivations of these equations with its recent reviews on the essential future development. Section 2 

will address the conservative equations, while in Section 3 the development and future research on the 

conservative equations are highlighted. The development of non-Newtonian momentum equations, 

formation of conservation equations in advanced coordinate systems and inclusion of miscellaneous 

body forces into momentum equations are discussed. 

 

2. Governing Equations in CFD 

 

Consider an infinitesimal fluid elements as shown in Fig. 1 - 3, which represents the flow field 

domain based on Cartesian, cylindrical and spherical coordinate respectively. The term κS1,S2 is a 

general representation of flow field vector, in which the subscript S1 and S2 is the spatial component 

for the flow field vector. 

 

2.1 Continuity Equations 

 

Continuity equation can be perceived as nonlinear diffusion equation with regular drift term, and it 

inspires ubiquitous applications in many fields such as crowd modelling [28], prediction of aerospace 

debris cloud evolution [29], biomedical imaging [30] and curve measurement analysis [31]. The 

equation can be treated as either initial boundary problem [32] or Cauchy problem [33] too.  

The fundamental physics of Continuity Equations is the principle of conservation of mass, proposed 

by Lavoisier [34] in 1985. Conservation of mass can be defined as: the conservation law that the rate 

of change of mass within a control volume (CV) is equivalent to the net rate of mass flowing into the 

CV [35,36]. Consider the integral form of the mass conservation equation: 

∂

∂t
� ρ.dV

CV
+ � ρv.n�⃑ .dA

CS
= 0,       ∀ v    ∈ ℝ          (1) 

Eq. (1) can be transformed to differential form using Gauss' divergence theorem [20,21] to form: 

ρ�+∇
ρv�=0              (2) 

However, the paper will demonstrate the derivation approach based on the CV facet analysis. ∇ is 

the divergence term which can be defined based on its coordinate system, which can be further 

developed into Eq. (5), (8) or (11). 

 

2.1.1 Cartesian coordinate Continuity equation 

 

Consider Fig. 1, the length of the infinitesimal fluid element in x, y, and z direction can be assigned 

as δx, δy and δz respectively. The term κS1,S2 in Fig. 1 can be defined as: 

κS1,S2 = 〈κx,x κy,y κz,z〉= �〈∂(ρux)

∂x

∂(ρuy)

∂y

∂(ρuy)

∂y
〉 .Vcar�Vcar=δxδyδz�       (3) 

The other κ are zero due to the non-slip boundary condition and by substituting Eq. (3) into Eq. (1), 

∂ρ

∂t
+
∂(ρux)

∂x
+
∂(ρuy)

∂y
+ ∂(ρuz)

∂z
= 0           (4) 

Taking v = �ux uy uz�, in an incompressible flow, Eq. (3) will be reduced to ∇.v    = 0 where: 

∇=
∂

∂x
+
∂

∂y
+
∂

∂z
             (5) 
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Fig. 1. Infinitesimal fluid field domain based on Cartesian coordinate 

 

2.1.2 Cylindrical coordinate Continuity equation 

 

Consider Fig. 2, the length of the infinitesimal fluid element in r, θ, and z direction can be assigned 

as δr, δθ and δz respectively. Upon dimensional expansion, these distances will evolve as r+δr, θ+δθ 

and z+δz respectively. The term κS1,S2 in Fig. 2 can be further defined as: 

κS1,S2=〈κr,r κθ,θ κz,z〉= �〈∂
ρur�
∂r

+
ρur

r

1

r

∂
ρ���
∂θ

∂
ρuz�
∂z

〉 .Vcyn�Vcyn ≈ rδθδrδz�     (6) 

The value of other non-normal κ is zero too due to the non-slip boundary condition. Note that δr
2
≈0 

during the derivation due to its infinite proximity to zero. The volume of the cylinder is: 

Vcy=
π
r+δr�2-πr2�×
δθ

2π
×δz ≈ rδθδrδz   ∎       

Substitute Eq. (6) into Eq. (1) will yield: 

∂ρ

∂t
+
ρur

r
+

∂�ρur�
∂r

+
1

r

∂
ρ���
∂θ

+
∂
ρuz�

∂z
= 0          (7) 

If the flow is incompressible, Eq. (7) can be simplified into ∇.v    = 0 too with the divergence term as 

in Eq. (8), provided that the velocity vector is v = �ur uθ uz�. 
∇=

1

r

∂(r )

∂r
+

1

r

∂

∂θ
+

∂

∂z
                                  (8) 

 

Fig. 2. Infinitesimal fluid field domain based on cylindrical coordinate 
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2.1.3 Spherical coordinate Continuity equation 

 

From Fig. 3, the length of control volume boundary and surface of the facets for the spherical fluid 

element can be shown in Table 1. All the κ will be zero as well, except κr,r, κθ,θ and κϕ,ϕ which can be 

mathematically expressed as in Eq. (9).  

κS1,S2=〈κr,r κθ,θ κz,z〉  
= 〈�ρur+ ∂(ρur)

∂r
δr� AEFGH-
ρur�AABCD �ρuθ+ ∂
ρuθ�

∂θ
δθ� .ABDFG-
ρuθ�.AACEH �ρuϕ+ ∂�ρuϕ�

∂ϕ
δϕ� .ACDGH-�ρuϕ�.AABEF

〉  
= �〈∂
ρur�

∂r
+

2ρur

r

1

r

∂
ρuθ�
∂θ

+
ρuθ

r

∂�ρuϕ�
∂ϕ

〉 .Vsph�Vsph ≈ r2 sin
θ� δrδθδϕ�      (9) 

The volume of spherical element can be approximated by taking the product of AACEH and LCD
∗, or 

using the Jacobian rules [37] for the derivation. Substitute Eq. (9) into Eq. (1) will form the 

compressible Continuity equation as in Eq. (10), in which ∇.v    = 0 where vvvv = �ur uθ uϕ� will be 

applied in incompressible case where its divergence term is shown in Eq. (11).  

∂ρ

∂t
+

2ρur

r
+

∂
ρur�
∂r

+
ρuθ

r
cot
θ�+

1

r

∂
ρuθ�
∂θ

+
1

r sin
θ� ∂�ρuϕ�
∂ϕ

=0                 (10) 

∇=
1

r2

∂(r2  )

∂r
+

1

r sin
θ� ∂
sin θ�
∂θ

+
1

r sin θ

∂

∂ϕ
                    (11) 

 

Fig. 3. Infinitesimal fluid field domain based on spherical coordinate 

 

 

Table 1 Geometry analysis on spherical fluid element based on Fig. 3 

 
Geometry Equation 

LAB rδθ 

LBC rsin(θ+δθ)δϕ 

LCD rδθ 

LAD rsin(θ)δϕ 

LEF (r+dr)δθ 

LFG (r+δr)sin(θ+δθ)δϕ 

LGH (r+δr)δθ 

LEH (r+δr)sin(θ)δϕ 

LAE, LBF, LCG, LDH δr 

AABCD r2sin(θ)δθδϕ 

AEFGH (r+δr)2sin(θ)δθδϕ 

ABDFG rsin(θ+δθ)δrδϕ 

AACEH rsin(θ)δrδϕ 

AABEF, ACDGH rδθδr 

                                                           

∗δr
2
 = δr

3
≈ 0, sin
δθ� ≈ δθ, cos
δθ� ≈ 1 
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2.2 Navier-Stokes Equations 

 

Momentum equations are originated from Newton’s second law which states that force of a moving 

object is equivalent to its rate of change of momentum. Expanding the definition will give the 

momentum equations in a general integral form of [35,38]: 

∑ F =
∂

∂t
� ρv.dV

CV
+ � ρ
vv�.n�⃑ .dA

CS
,       ∀ v    ∈ ℝ                  (12) 

The first term of Eq. (12) represents the body forces which may include gravity, Coriolis effects, 

centrifugal force and electromagnetic force [36]; while the second term denotes the surface forces, 

which typically refers to pressure force and viscous force. If the flow is in steady state, then ∑ F will 

be negated. Eq. (12) was expanded by French mathematician Augustin Louis de Cauchy [39] into 

differential term with the application of divergence theorem in such a way that: 

∂

∂t

ρv�+∇.
ρvv�=ρg+∇.σij����⃗                                                      (13) 

∂

∂t

ρv�+∇.
ρvv� = ρ �∂v

∂t
+(v.∇)v� =ρ

Dv

Dt
                   (14) 

Eq. (14) is indeed the material derivative [21], and sometimes it is named as total, particle, 

Lagrangian, Eulerian or substantial derivatives [26]. It stands for the convection phenomenon and its 

cancellation implies the formation of creeping flow. ρg and ∇.σij����⃗  represents body force and sum of 

applied surface forces, respectively [21]. However, the exact equation for divergence term ∇ will be 

varied from the coordinate systems. Eq. (13) needs to be further developed, and it will evolve as the 

famous Navier-Stokes equations [40]. This implies that only Newtonian fluid is considered, while the 

non-proportional relationship between velocity field and stress tensor which exists in non-Newtonian 

fluid requires additional modelling [41-44], and it will not be covered in this section. 

 

2.2.1 Cartesian coordinate Navier-Stokes Equations 

 

The material derivative of the Cartesian coordinate can be expanded as: 

Dv

Dt
=
∂v

∂t
+
∂v

∂x

∂x

∂t
+
∂v

∂y

∂y

∂t
+
∂v

∂z

∂z

∂t
=
∂v

∂t
+ux

∂v

∂x
+uy

∂v

∂y
+uz ∂v∂z                            (15) 

The κS1,S2 term in this section refers to viscous forces acting on the control surface of fluid element 

per unit volume: 

κ    = ####κx,x κx,y κx,z

κy,x κy,y κy,z

κz,x κz,y κz,z

$$$$ =
⎝⎝⎝⎝
⎜⎜⎜⎜⎛⎛⎛⎛
∂τxx

∂x

∂τxy

∂x

∂τxz

∂x

∂τyx

∂y

∂τyy

∂y

∂τyz

∂y

∂τzx

∂z

∂τzy

∂z

∂τzz

∂z ⎠⎠⎠⎠
⎟⎟⎟⎟⎞⎞⎞⎞ = ∂τ

∂X
                  (16) 

τ    = ####τxx τxy τxz

τyx τyy τyz

τzx τzy τzz

$$$$ =

⎝⎝⎝⎝
⎜⎜⎜⎜⎛⎛⎛⎛

2μ
∂ux

∂x
+λ∇.v μ ����∂ux

∂y
+
∂uy

∂x
���� μ ����∂ux

∂z
+
∂uz

∂x
����

μ ����∂uy

∂x
+
∂ux

∂y
���� 2μ

∂uy

∂y
+λ∇.v μ ����∂uy

∂z
+
∂uz

∂y
����

μ ����∂uz

∂x
+
∂ux

∂z
���� μ ����∂uz

∂y
+
∂uy

∂z
���� 2μ

∂uz

∂z
+λ∇.v⎠⎠⎠⎠

⎟⎟⎟⎟⎞⎞⎞⎞               (17) 

where X = [x y z] while λ is the second viscosity of the fluid, which correspond to the viscous effect 

due to compression or dilatation [45]. Mathematically, λ=2μ/3-n', where n' can be cancelled out when 
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the fluid exists as monatomic gas at low density [46]. When the flow is incompressible, ∇.v    = 0 takes 

the second viscosity to be ignorable. By combining Eq. (16) and (17) will form: 

τ = 〈〈〈〈μ∇2ux〉〉〉〉ex+〈〈〈〈μ∇2uy〉〉〉〉ey+〈〈〈〈μ∇2uz〉〉〉〉ez = ++++μ∇2v,,,,∇2=
∂

2

∂x2
+
∂

2

∂y2
+
∂

2

∂z2
----               (18) 

With the presence of pressure gradient per unit volume, Eq. (15) and Eq. (18) can be incorporated 

to form the Navier-Stokes Equations as in Eq. (19). 

ρ
Dv

Dt
=-

∂P

∂X
+μ∇2vvvv+ρgX                                       (19) 

 

2.2.2 Cylindrical coordinate Navier-Stokes Equations 

 

The material derivative in cylindrical coordinate can be obtained as in Eq. (20). ∵  ur∂t = ∂r , uθ∂t = r∂θ , uz∂t = ∂z  

Dv

Dt
=
∂v

∂t
+
∂v

∂r

∂r

∂t
+
∂v

∂θ

∂θ

∂t
+
∂v

∂z

∂z

∂t
⟺ ∂v

∂t
+ur

∂v

∂r
+

uθ

r

∂v

∂θ
+uz

∂v

∂z
                 (20) 

Expanding Eq. (20) with respect to its spatial components, 

Dv

Dt
=
∂
v.eX�
∂t

+
uθ

r

∂
v.eX�
∂θ

+uz
∂
v.eX�
∂z

  

Note that from differential operations in curvilinear coordinates [47,48],  

∂er

∂θ
=eθ and 

∂eθ

∂θ
=-er 

∴  Dv

Dt
= 〈∂ur

∂t
+ur

∂ur

∂r
+uθ �1

r

∂ur

∂θ
-

uθ

r
� +

∂ur

∂z
〉 er+ 〈∂uθ

∂t
+ur

∂uθ

∂r
+uθ �1

r

∂uθ

∂θ
+

ur

r
� +

∂uθ

∂z
〉 eθ + 〈∂uz

∂t
+ur

∂uz

∂r
+uθ �1

r

∂uz

∂θ
� +

∂uz

∂z
〉 er     (21) 

While the stress tensors for the cylindrical fluid elements are: 

κ = ####κr,r κθ,r κz,r

κr,θ κθ,θ κz,θ

κr,z κθ,z κz,z

$$$$ =
⎝⎝⎝⎝
⎜⎜⎜⎜⎛⎛⎛⎛

τrr

r
+
∂τrr

∂r

1

r

∂τθr

∂θ

∂τzr

∂z

τrθ

r
+
∂τrθ

∂r

1

r

∂τθθ

∂θ

∂τzθ

∂z

τrz

r
+
∂τrz

∂r

1

r

∂τθz

∂θ

∂τzz

∂z ⎠⎠⎠⎠
⎟⎟⎟⎟⎞⎞⎞⎞ = ∂τ

∂X
                 (22) 

Note that δr
2 ≈ 0 during the simplification process. Due to its mathematical nature in curvilinear 

coordinates [44,45], the stress tensor will be: 

τ    = 〈〈〈〈τrr

r
+
∂τrr

∂r
+

1

r

∂τθr

∂θ
+
∂τzr

∂z
-
τθθ

r
〉〉〉〉 er+ 〈〈〈〈τrθ

r
+
∂τrθ

∂r
+

1

r

∂τθθ

∂θ
+
∂τzθ

∂z
+
τθr

r
〉〉〉〉 eθ+ 〈〈〈〈τrz

r
+
∂τrz

∂r
+

1

r

∂τθz

∂θ
+
∂τzz

∂z
〉〉〉〉 ez            (23) 

The single deformation rate, ς could be formulated from the material derivatives from Eq. (21) by 

removing the unsteady term and the velocity vectors prior to the operators, as shown in Eq. (24). The 

stress tensor, τ can be consequently transformed into the deformation rate tensor by the summation of 

the single deformation and inverse of single deformation. 

ς = ####ς
rr

ς
rθ

ς
rz

ς
θr

ς
θθ

ς
θz

ς
zr

ς
zθ

ς
zz

$$$$ =
⎝⎝⎝⎝
⎜⎜⎜⎜⎛⎛⎛⎛
∂ur

∂r

1

r

∂ur

∂θ
-

uθ

r

∂ur

∂z

∂uθ

∂r

1

r

∂uθ

∂θ
+

ur

r

∂uθ

∂z

∂uz

∂r

1

r

∂uz

∂θ

∂uz

∂z ⎠⎠⎠⎠
⎟⎟⎟⎟⎞⎞⎞⎞                            (24) 



Progress in Energy and Environment 

Volume 1 (2017) 1 - 19 

7 

 

Penerbit

Akademia Baru

τ = ####τrr τrθ τrz

τθr τθθ τθz
τzr τzθ τzz

$$$$ = μ



ς+ς-1���� = μ
⎝⎝⎝⎝
⎜⎜⎜⎜⎛⎛⎛⎛

2
∂ur

∂r

1

r

∂ur

∂θ
-

uθ

r
+
∂uθ

∂r

∂ur

∂z
+
∂uz

∂r

∂uθ

∂r
+

1

r

∂ur

∂θ
-

uθ

r
2 ����1

r

∂uθ

∂θ
+

ur

r
���� ∂uθ

∂z
+

1

r

∂uz

∂θ

∂uz

∂r
+
∂ur

∂z

1

r

∂uz

∂θ
+
∂uθ

∂z
2
∂uz

∂z ⎠⎠⎠⎠
⎟⎟⎟⎟⎞⎞⎞⎞ . 



er eθ ez����        (25) 

Incorporating Eq. (25) with Eq. (23) will form the cylindrical Navier-Stokes Equation. 

τ = 3333〈〈〈〈μ ����∇2ur-
ur

r2
-

2

r2

∂uθ

∂θ
����〉〉〉〉 er+ 〈〈〈〈μ ����∇2uθ-

uθ

r2
+

2

r2

∂ur

∂θ
����〉〉〉〉 eθ+〈〈〈〈μ∇2uz〉〉〉〉ez,,,,∇2=

1

r

∂

∂r
����r

∂

∂r
���� +

1

r2

∂
2

∂θ
2 +

∂
2

∂z2
4444             (26) 

∴    ρ Dv

Dt
= ∂P
∂X

+ττττXXXX+ρg
X

                       (27) 

 

2.2.3 Spherical coordinate Navier-Stokes Equations 

 

The derivation procedure for spherical coordinate Navier-Stokes equations basically complies with 

all the steps as shown from Eq. (20) - (27). Therefore, only key equations and steps are unfolded here.  ∵   ur∂t = ∂r , uθ∂t = r∂θ , uϕ∂t = r
sinθ�∂ϕ  
Dv

Dt
=
∂v

∂t
+
∂v

∂r

∂r

∂t
+
∂v

∂θ

∂θ

∂t
+
∂v

∂ϕ

∂ϕ

∂t
⟺ ∂v

∂t
+ur

∂v

∂r
+

uθ

r

∂v

∂θ
+

uϕ

rsinθ

∂v

∂ϕ
                (28) 

The differential operations in curvilinear coordinates [47,48] for spherical domain are: 

∂eX

∂X
=

⎝
⎜⎛
∂er

∂r

∂eθ

∂r

∂eϕ

∂r

∂er

∂θ

∂eθ

∂θ

∂eϕ

∂θ

∂er

∂ϕ

∂eθ

∂ϕ

∂eϕ

∂ϕ⎠
⎟⎞ = 6 0 0 0

eθ -    er 0

eϕsinθ eϕcosθ -    ersinθ -    e
θ
cosθ

7                          (29) 

∴  Dv

Dt
= 〈∂ur

∂t
+ur

∂ur

∂r
+uθ �1

r

∂ur

∂θ
-

uθ

r
� +uϕ � 1

rsinθ

∂ur

∂ϕ
-

uϕ

r
�〉 er+ 〈∂uθ

∂t
+ur

∂uθ

∂r
+uθ �1

r

∂uθ

∂θ
+

ur

r
� +uϕ � 1

rsinθ

∂uθ

∂ϕ
-

uϕcotθ

r
�〉 eθ+ 〈∂uϕ

∂t
+ur

∂uϕ

∂r
+

uθ

r

∂uϕ

∂θ
+uϕ � 1

rsinθ

∂uϕ

∂ϕ
+

ur+uθcotθ

r
�〉 er                    (30) 

The stress tensor is formed based on the momentum conservation principle by referring to Fig. 3. 

τ    = 〈〈〈〈 1

r2

∂����r2τrr����
∂r

+
1

rsinθ

∂



τθrsinθ����
∂θ

+
1

rsinθ

∂τϕr

∂ϕ
-
τθθ+τϕϕ

r
〉〉〉〉 er + 〈〈〈〈 1

r3

∂����r3τrθ����
∂r

+
1

rsinθ

∂



τθθsinθ����
∂θ

+
1

rsinθ

∂τϕθ

∂ϕ
-

τrθ+τϕϕcotθ-τθr

r
〉〉〉〉 eθ + 〈〈〈〈 1

r3

∂����r3τrϕ����
∂r

+
1

rsinθ

∂����τθϕsinθ����
∂θ

+
1

rsinθ

∂τϕϕ

∂ϕ
-
τrϕ+τϕθcotθ+-τϕr

r
〉〉〉〉 ez              (31) 

The corresponding constitutive relationships will be: 

ς = 6666ς
rr

ς
rθ

ς
rz

ς
θr

ς
θθ

ς
θϕ

ς
ϕr

ς
ϕθ

ς
ϕϕ

7777 =
⎝⎝⎝⎝
⎜⎜⎜⎜⎛⎛⎛⎛
∂ur

∂r

1

r

∂ur

∂θ
-

uθ

r

1

rsinθ

∂ur

∂ϕ
-

uϕ

r

∂uθ

∂r

1

r

∂uθ

∂θ
+

ur

r

1

rsinθ

∂uθ

∂ϕ
-

uϕcotθ

r

∂uϕ

∂r

1

r

∂uϕ

∂θ

1

rsinθ

∂uϕ

∂ϕ
+

ur+uθcotθ

r ⎠⎠⎠⎠
⎟⎟⎟⎟⎞⎞⎞⎞                          (32) 

8 = #τrr τrθ τrϕ

τθr τθθ τθϕ
τϕr τϕθ τϕϕ

$ = μ

⎝
⎜⎛

2
∂ur

∂r

1

r

∂ur

∂θ
-

uθ

r
+
∂uθ

∂r

1

rsinθ

∂ur

∂ϕ
-

uϕ

r
+
∂uϕ

∂r

∂uθ

∂r
+

1

r

∂ur

∂θ
-

uθ

r
2 �1

r

∂uθ

∂θ
+

ur

r
� 1

rsinθ

∂uθ

∂ϕ
-

uϕcotθ

r
+

1

r

∂uϕ

∂θ

∂uϕ

∂r
+

1

rsinθ

∂ur

∂ϕ
-

uϕ

r

1

r

∂uϕ

∂θ
+

1

rsinθ

∂uθ

∂ϕ
-

uϕcotθ

r
2 � 1

rsinθ

∂uϕ

∂ϕ
+

ur+uθcotθ

r
�⎠

⎟⎞           (33) 
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τ= 9999μ ����∇2ur-
2ur

r2
-

2

r2

∂uθ

∂θ
-

2uθcotθ

r2
-

2

r2sinθ

∂uϕ

∂ϕ
���� er+μ ����∇2uθ+

2

r2

∂ur

∂θ
-

uθ



rsinθ����2
-

2cotθ

r2sinθ

∂uϕ

∂ϕ
���� eθ

+μ ����∇2uz+
2

r2sinθ

∂ur

∂ϕ
-

uϕ



rsinθ����2
-

2cotθ

r2sinθ

∂uθ

∂ϕ
���� ez

::::∇2=
1

r2

∂
2����r2 ����
∂θ

2 +
1

r2sinθ

∂

∂θ
����sinθ

∂ 
∂θ

���� +
1

r2sin
2
θ

∂
2 
∂ϕ

2;;;;   (34) 

When the pressure effect and body force effect step in, the spherical Navier-Stokes Equations will 

be formed in the similar way as in Eq. (27). 

 

2.3 Energy Equations 

 

The energy increment rate per unit volume, ΔE consists of kinetic term and internal term, while the 

net heat flux going into the control volume per unit volume, q � . Referring to Fig. 1, 

∆E = ρ D

Dt
�e+

1

2
v2�                                (35) 

q � = - �∂qx

∂x
+
∂qy

∂y
+
∂qz

∂z
� = �-∇.q�∇=

∂

∂x
+
∂

∂y
+
∂

∂z
�                             (36) 

The work done on the control volume, W�  is the product of wall shear stress or pressure, and the 

velocity component at a fluid element surface: 

W�  = �- ∇∙
Pv� + 
∂
τXuX�
∂X

+ ρVg�τX∥∥∥∥X�                             (37) 

where ρVg represents the work done by the volume force per unit mass which acts on the fluid such 

as gravity. The pressure and shear stress components are the effect of surface force while the work 

done by the moving fluid is analogue to the effect of body force as explained in the previous section. 

Combining Eq. (35) - (37): 

ρ
D

Dt
�e+

1

2
v2� =-∇.q-∇∙
Pv�+

∂
τXuX�
∂X

+Q�
volume

+ρV∙g ⇔ ⇔ ⇔ ⇔ -∇.q-∇∙
Pv�+v∙f+μΦ+Q�
volume

+ρVg               (38) 

f    = ����∂τxx

∂x
+
∂τyx

∂y
+
∂τzx

∂z
���� ex+ ����∂τxy

∂x
+
∂τyy

∂y
+
∂τzy

∂z
���� ey+ ����∂τxz

∂x
+
∂τyz

∂y
+
∂τzz

∂z
���� ez                (39) 

μΦ= �τxx
∂ux

∂x
+τyy

∂uy

∂y
+τzz

∂uz

∂z
� +τxy �∂uy

∂x
+
∂ux

∂y
� +τyz �∂uz

∂y
+
∂uy

∂z
� +τzx �∂ux

∂z
+
∂uz

∂x
�                       (40) 

where Q�
volume

 represents a volumetric heat generation per unit volume. Eq. (38) is the one form of the 

energy equation.  However, we can rewrite it to other forms using the Cauchy momentum equation as 

in Eq. (13).  The Cauchy momentum equation can be rewritten as: 

ρ
Dv

Dt
=ρg    - ∇P + f   

ρVVVV Dv

Dt
 = 

ρV

2

Dv2

Dt
==== ρVg - V....∇P +V....f                    (41) 

∵    Fourier’s law, q = - k∇.T  

Subtracting Eq. (41) from Eq. (38),  

ρ
De

Dt
=∇.
 k∇.T�-P
 ∇.v�+μΦ+Q�

volume
                  (42) 

Eq. (42) is another form of the energy equation. Note that the ρVg term is vanished in Eq. (42).  

However, the potential energy based on ρVg is implicitly included in Eq. (42) since the potential 

energy is considered in Eq. (41). Continuity equation as in Eq. (2) can be rewritten as ∇∙v    = - 1

ρ

Dρ

Dt
                                 (43) 

By substituting Eq. (43) into (42), Eq. (41) becomes 
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ρ � De

Dt
+P

Dρ-1

Dt
 � =∇∙
 k∇.T�+μΦ+Q�

volume
                 

h = e + P  ρ⁄   

ρ
Dh

Dt
=

DP

Dt
+∇∙
 k∇.T�+μΦ+Q�

volume
                   (44)            

Eq. (44) is the most common form of the energy equation. Expanding viscous tensor, Φ: 

     �∂uy

∂x
+
∂ux

∂y
�2

+ �∂uz

∂y
+
∂uy

∂z
�2

+ �∂ux

∂z
+
∂uz

∂x
�2

+
2

3
A�∂ux

∂x
-
∂uy

∂y
�2

+ �∂uy

∂y
-
∂uz

∂z
�2

+ �∂uz

∂z
-
∂ux

∂x
�2B  Cartesian 

Φ =     �∂uθ

∂x
-

uθ

r
+

1

r

∂ur

∂θ
�2

+ �1

r

∂uz

∂θ
+
∂uθ

∂z
�2

+ �∂ur

∂z
+
∂uz

∂r
�2

+2 A�∂ur

∂r
�2

+ �1

r

∂uθ

∂θ
+

ur

r
�2

+ �∂uz

∂z
�2B -

2

3

∇∙v�2  Cylindrical                 (45) 

             �r
∂

∂r
�uϕ

r
� +

1

r

∂ur

∂ϕ
�2

+ �sinϕ

r

∂

∂θ
� uθ

rsinϕ
� +

1

rsinϕ

∂uθ

∂θ
�2

+ C 1

rsinϕ

∂ur

∂θ
+r

∂

∂r
�uθ

r
�D2

+2 A�∂ur

∂r
�2

+ �1

r

∂uϕ

∂ϕ
+

ur

r
�2

+ � 1

rsinϕ

∂uθ

∂θ
+

ur

r
+

uϕcotϕ

r
�2B -

2

3

∇∙vvvv�2 

       Spherical 

The specific enthalpy is a function of temperature and pressure. It can be expressed as 

dh = �∂h
∂T

�
p

dT+ �∂h
∂P

�
T

dP                               (46) 

The thermodynamic relations give us 

�∂h
∂T

�
p

= CP ,  �∂h
∂P

�
T

=
1-βT

ρ
                              (47) 

where CP is the specific heat at constant pressure and β is the volume expansivity, β = - 1

ρ
� ∂ρ
∂T

�
P
 . If the 

fluid is an ideal gas, the volume expansivity is 

β = 1

T
                      (48) 

By substituting Eq. (48) into Eq. (47), the specific enthalpy is expressed as 

dh = CPdT                                 (49) 

By substituting Eq. (49) into Eq. (44), the energy equation for an ideal gas is obtained as: 

ρCP
DT

Dt
=

DP

Dt
+∇∙
 k∇.T�+μΦ+Q�

volume
                             (50) 

If the density of a fluid is constant.  The volume expansion of such a constant density fluid is zero: 

dh = CPdT+
1

ρ
dP                                (51) 

By substituting Eq. (51) into Eq. (44),  

ρCP
DT

Dt
 = ∇∙
 k∇.T�+μΦ+Q�

volume
                              (52) 

Let’s consider a steady ideal gas flow without volume heat generation whose properties are constant 

except the density. The Cartesian coordinate system is considered for convenience. Using the 

following dimensionless variables: 

X=
x

L
,   Y=

y

L
,   Z=

z

L
,   Ux=

ux

uref

,   Uy=
uy

uref

,   Uz=
uz

uref

 ,  

P = P

ρ
ref

uref
2  ,   Θ=

T

Tref

,   Re = ρref
u

ref
 L

μ
,   Ma=

urefEγRgasTref

,   ρ*=
ρ

ρ
ref
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The energy equation is expressed as 

ρ* �UX
∂Θ

∂X
+UY

∂Θ

∂Y
+UZ

∂Θ

∂Z
� =
γ-1�Ma2 �UX

∂P

∂X
+UY

∂P

∂Y
+UZ

∂P

∂Z
� +

1

RePr
F∂2
Θ

∂X
2 +

∂
2
Θ

∂Y
2 +

∂
2
Θ

∂Z
2G +
γ-1� Ma2

Re
Φ

*

               (53) 

where Φ* is the dimensionless viscous dissipation function and it can be expressed as: 

Φ*= A�∂UY

∂X
+
∂UX

∂Y
�2

+ �∂UZ

∂Y
+
∂UY

∂Z
�2

+ �∂UX

∂Z
+
∂UZ

∂X
�2B +

2

3
A�∂UX

∂X
-
∂UY

∂Y
�2

+ �∂UY

∂Y
-
∂UZ

∂Z
�2

+ �∂UZ

∂Z
-
∂UX

∂X
�2B            (54) 

Note that the first and the third terms of right hand side of Eq. (54) are the substantial derivative of 

pressure term (SDP) and the viscous dissipation term (VD), respectively. Ma2 is multiplied to both 

terms.  Therefore, the both SDP and VD terms can be neglected when the Ma of the flow is less than 

0.3. However, the both terms should be neglected simultaneously.  If one of the both terms remains, 

this results in physically unrealistic result [49].  Then, the energy equation of an ideal gas flow with 

low velocity becomes: 

ρCP

DT

Dt
 = ∇∙
 k∇.T� + Q�

volume
                              (55) 

The same form of the equation is obtained for a constant density fluid flow if the viscous dissipation 

is negligible. Usually, the viscous dissipation term for a liquid flow in a conventional size tube is 

negligible.  However, the velocity gradient of a flow in a small sized tube becomes huge, it is to say 

that the viscous dissipation of a liquid flow in a micro tube whose diameter is less than 200 µm is not 

negligible [50, 51]. In such a case, Eq. (52) should be solved. 

 

3. Developments and Future Research of CFD Governing Equations 

 

Navier-Stokes equations are the pillar for all the fluid flow dynamics [35], with very wide 

applications in engineering such as aerodynamics [52-54], fluid-structure interaction [55-60], turbo-

machinery [61-64], biomedical simulations [65-68], nanofluids [10,69-71] and bio-inspired 

transportation [72-75]. Due to its omnipresent applications, providing the solution to the Navier-Stokes 

Equations becomes one of the largest interests among the researchers. Due to its mathematical 

perplexity and its application-wise complexity, the equations are solved numerically in three ways: 

fixed-grid methods [36,40,76-81], immersed boundary methods [82-84], meshfree methods [85-90] 

and other numerical schemes such as Runge-Kutta method [91,92]. 

However, Navier-Stokes Equations do not consider many other factors and researches are working 

on to complement them. Dong and Wu [93] claimed that the current Navier-Stokes Equations have 

under-estimated the fluid forces, as the rotations, changes in shear rate and turbulence [94] will add in 

more forces. They modified Eq. (19) to be: 

ρ
Dv

Dt
=-

∂P

∂X
+μ∇2v+ρg

X
+f

u

A
+f

u

B
+f

u

R
+f

u

S
                  (56)            

where f
u

A
, f

u

B
, f

u

R
 and f

u

S
 is additional unsteady force with u, additional history force with u, 

additional rotational force with u and additional gradient force, respectively. 

The flow is also sometimes associated with a source of vorticity such as pressure gradient due to 

non-slip boundary conditions and Coriolis effect. Such a flow is named as non-stationary. Ershkov 

[95,96] modified the Navier-Stokes Equations and developed an approximate solution for it using 

Riccati partial differential equation [97]. 

0 = - ∂P
∂X

+μ∇2v+
1

2

uP����⃗ +uW����⃗ �2                    (57) 

uP����⃗  is the irrotational field of flow while uW����⃗  is a solenoidal field of flow velocity which generates a 

curl field. When the flow becomes turbulent, flow field fluctuation set in and more unknowns 
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transpires. This calls for the necessity to model more equations in order to close the existing equations. 

Navier-Stokes equations will need to be modified as Reynolds-Averaged Navier-Stokes (RANS) 

Equations [98,99] as shown in Eq. (59), and therefore turbulence modelling [100-104] is then 

introduced. Large eddy simulation [105-107] and direct numerical simulation [108-110] are 

alternatives too to deal with RANS equations. 

ρ
DvH
Dt

=-
∂PH
∂X

+μ∇2vH+ρg
X
-ρ � ∂
v'I .v'I�

∂X
�                              (58) 

Note that PH and vH is the average pressure and velocity respectively, while v'I  represents the velocity 

fluctuation. The term ρ � ∂
v'I .v'I�
∂X

� is named as Reynolds stress. RANS equations will be significant too 

at a distance far away from the non-slip wall, as the eddies and turbulence production is high. When 

the speed of fluid goes beyond unity Mach number, the Navier-Stokes equations need to be modified 

to fit with the compressible flow [111-113], whereby the second viscosity in Eq. (17) can't be ignored 

as ∇v ≠ 0. 

Meanwhile energy equations are widely applied in computational heat transfer, which is often 

coupled with the computational fluid dynamics where the Continuity equations and Navier-Stokes 

equations are applied. Heat transfer analysis for internal flow [114-117], turbo-machinery [119-121] 

and biological heat transfer [122,123] are amongst the key research areas which needs energy equation 

as its governing equations. 

In short, the development of both Navier-Stokes equations and energy equations move towards the 

inclusion of more other boundary factors, which re-conciliate the experimental and numerical 

techniques with the existing equations. Establishment of such ansatz may simplify the procedures in 

numerical analysis with the reduction of complexity in boundary condition treatment. The future 

development of the fluid dynamics equations, is not only confined to the solution of the equations 

using various techniques, but also the improvement of the equations which could predict real 

phenomenon more accurately. The recommendations for the future development could comprise the 

development of non-Newtonian momentum equations, formation of conservation equations in 

advanced coordinate systems and inclusion of more body forces into momentum equations. 

 

3.1 Development of non-Newtonian Momentum Equations 

 

Incorporation and simplification of the viscous term for non-Newtonian fluid [124,125]. Although 

there are a quite number of rheological correlation between the shear stress and viscosity [126-129], 

the incorporation of the non-Newtonian term into the Navier-Stokes and energy equations will expedite 

the modelling. This will expand the research horizon into the numerical and algorithm development 

for solving the engineering problems through computational rheology [130,131]. 

In this paper, the Ostwald-de Waele power law [132] is taken as the example to be incorporated 

into momentum equations. By considering the Cartesian coordinate, Eq. (17) can be modified as: 

τ    =
⎝⎝⎝⎝
⎜⎜⎜⎜⎜⎜⎜⎜⎛⎛⎛⎛

μ ����2
∂ux

∂x
����n

+λ∇.v μ ����∂ux

∂y
+
∂uy

∂x
����n

μ ����∂ux

∂z
+
∂uz

∂x
����n

μ ����∂uy

∂x
+
∂ux

∂y
����n

μ ����2
∂uy

∂y
����n

+λ∇.v μ ����∂uy

∂z
+
∂uz

∂y
����n

μ ����∂uz

∂x
+
∂ux

∂z
����n

μ ����∂uz

∂y
+
∂uy

∂z
����n

μ ����2
∂uz

∂z
����n

+λ∇.v⎠⎠⎠⎠
⎟⎟⎟⎟⎟⎟⎟⎟⎞⎞⎞⎞                            (59) 

Substituting Eq. (60) into (19) will lead to Eq. (61): 

ρ
DuX

Dt
=-

∂P

∂X
+μ

∂

∂X
A ∂uxj

∂xi
+
∂uxi

∂xj
B  n

+ρg
X

                                           (60) 
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where i and j is the spatial component, based on the stress tensor as in Eq. (59). n is the flow behaviour 

index. If n < 1 and n > 1 the fluids will exhibit pseudoplastic and dilatant behaviour respectively. The 

typical example for the former and later fluids is blood plasma and corn starch in ethylene glycol [133]. 

Eq. (61) can be therefore be applied to solve through various numerical methods such as SIMPLE 

algorithm [36] and stream-vorticity functions [76]. 

There are quite a number of non-Newtonian models, which can be found in several textbooks 

[41,124,125,134-136], which can be indeed further incorporated into the momentum equations. 

Furthermore, the expansion of the equations into curvilinear coordinate will open up a room for further 

researches. Such incorporation will path the way for the numerical simulation on non-Newtonian fluids 

and its conciliation with experimental results. Such development will bridge the gap that many non-

Newtonian fluids applications such as blood flow [137-139], food processing [140-142] and chemical 

reactors [143-145] are simulated based the Stokes Law most of the time. 

 

3.2 Formation of Conservation Equations in Advanced Coordinate Systems 

 

Several meshing techniques are proposed in order to deal with the meshing issue. One of them is 

hybrid meshing [146] which combines the structured, unstructured and chimera grids in order to 

conform with the problem domain, as shown in Fig. 4. Such hybrid meshing calls for great energy 

when the boundary is in curvature form, while poses potential errors that lead to inconsistency and 

inaccuracy, including improper skewness, wrap angle ad aspect ratio. Local refinement at the boundary 

is possible, yet it will consume heavier computational effort.  

 

 
Fig. 4. Hybrid meshing [147] 

 

Some other more sophisticated methods of meshing are proposed too such as medial axis transform 

[148], all-quad meshing [149], dual contouring tetrahedral decomposition [150], high order curvilinear 

meshing [151] and radial basis function mesh deformation [152].  

 To enhance the room for computation without the cost of complex meshing, the Continuity 

equation, Navier-Stokes equations and energy equations in more advanced coordinate system can be 

developed. The possible system of coordinate could comprise ellipsoid, cone, hyperboloid and 

elliptical-paraboloid coordinate. The coordinate equation for ellipsoid, cone, hyperboloid and 

elliptical-paraboloid is from Eq. (61.1) - (61.4) respectively. 

�x
a
�2

+ �y
b
�2

+ �z
c
�2

= 1                             (61.1) 

�x
a
�2

+ �y
b
�2

- �z
c
�2

= 0                             (61.2) 

�x
a
�2

+ �y
b
�2

- �z
c
�2

= 1                             (61.3) 
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�x

a
�2

+ �y

b
�2

-
z

c
 = 0                                      (61.4) 

a, b and c is the radius in the x-, y- and z- component respectively. However, the main problems in 

introducing the curvilinear conservation equations are: (1) mathematical complexity of determining 

the spatial derivatives during the derivations; and (2) singularity issue when the radius is approaching 

zero. To prevent the singularity issue, sometimes the curvilinear coordinate equations are not applied, 

while Cartesian equations will take place with some refinement on the meshing [148-152]. 

However, this remains a great field to be proceeded to enable to more robust computations without 

meshing issues for quite a wide range of engineering simulations such as airfoils investigation, 

shipping hydrodynamics, turbo-machineries flow dynamics and processing reactors simulations. 

 

3.3 Inclusion of More Body Forces into Momentum Equations 

 

Addition of more body force components into conservative equations, especially the momentum 

equations will be the next possible research direction. Most of the time, only gravitational force is 

considered during the modeling, as shown in Eq. (19) and (37). The introduction of electromagnetic 

force, Coriolis force, centrifugal force, impact force and vibrating force into the conservative equations 

will complement the equations, which will bring the CFD research to a greater height in investigating 

engineering physics. In adherence with the dimensional homogeneity of Eq. (19), the modified Navier-

Stokes equations with the inclusion of expression of various body force can be: 

DuX

Dt
=-

∂P

∂X
+ν∇2uX+ρ Ag

X
+

vJ2

2
B +

q

V
�E��⃗ +v�⃑ H��⃑ �+2ρvtω+ρrω2+

F0

V
cos
ωt�                         (62) 

where vJ, V, q, E��⃗ , v�⃑ , H��⃑ ,vt , ω, KL and ν is vector moving speed of the control volume, volume of 

infinitesimal fluid element (m3), electric charge (Coulombs), electric field (volts per meter), charge 

velocity (m/s), magnetic field (Tesla), tangential velocity (m/s), radial speed (rad/s), vibrating force 

(Newton) and kinematic viscosity (m2/s) respectively. 

Do note that the term ρ
vJ2

2
 represents impact force, 

q

V
(E��⃗ +v�⃑ H��⃑ ) is named as Lorentz force equation 

which represent the electromagnetic force [153], 2ρvω+ρrω2 is the Coriolis force or centrifugal force 

[154] while 
F0

V
cos
ωt� denotes vibrating effects.  

It is noteworthy that due to the complexity in the mechanical vibration, F0 is subjected to various 

parameters such as forced vibration, free vibration and damping. This will introduce fluid structure 

interaction with, in which such inclusion of body force may negate the necessity to implement 

immersed boundary methods [155] and meshfree methods [156,157] in the numerical solution.  

 

4. Conclusion 

 

The full derivations of Continuity equations, Navier-Stokes equations and energy equations have 

been structured out with physical explanation, applications and development. Recommendations on 

the future research in the development of governing equations are illustrated too. Development of non-

Newtonian momentum equations, introduction of advanced system of coordinate into conservation 

equations and incorporation of body forces into the momentum equations will help to bypass the 

necessity to apply complicated numerical techniques in solving fluid dynamics problems. This will 

suggest a new path for CFD research in the nearest future. 
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