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Abstract 

A promising ventilation strategy is an effective measure to enhance indoor air 

quality and protect the patients against healthcare-acquired infection. The 

Computational Fluid Dynamics (CFD) model represents a patient ward that 

was constructed using Computer-Aided Design (CAD) software. The 

simulated results were verified and validated based on the published data. A 

Renormalization Group (RNG) k-ε model based on the Eulerian approach was 

used to simulate the airflow turbulence, while a discrete phase model (DPM) 

based on the Lagrangian approach was used to predict the dispersion of 

airborne particles. This study examined four cases of ventilation strategies, 

with varying ventilation rates, positioning of supply air diffusers, and location 

of exhaust grilles. This study revealed that the installation of air curtain jet 

coupled with a ceiling-mounted air supply diffuser (case 3) above the patient-

occupying zone has the highest wiping efficiency against the infectious 

particles. The utilization of ventilation strategy in case 3 managed to reduce 

the particle by approximately 3.3 times as compared to the baseline case. The 

study outcome also suggested that the exhaust grilles should be placed on the 

upper wall, to ensure a proper mixing of fresh air in the entire patient ward.  
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1 Introduction 

Healthcare-associated infections (HAI) remained one of the dominant threats among admitted patients. 

Between 1975 and 1995, the rate of HAI per 1,000 patient days increased by 36% [1]. HAI is also the 

sixth most common cause of death in acute care hospitals, with an estimated 90,000 fatalities each year 
directly attributable to it [2].  In 2011, Magill, Edwards, Bamberg, Beldavs, Dumyati, Kainer, Lynfield, 

Maloney, McAllister-Hollod, Nadle, Ray, Thompson, Wilson and Fridkin [3] reported that 

approximately 648,000 hospitalized patients suffered 721,800 HAIs, according to the multistate point-
prevalence survey in the US. The Centers for Disease Control and Prevention estimated that 1.7 million 

of HAIs and 99,000 associated fatalities yearly [4]. Later, about 2 million cases of HAI are reported 

each year in the US, according to estimates [5]. In 2018, it was estimated that 3% of hospitalized patients 
in China had HAIs and more than 500,000 of these infections occur in intensive care units (ICUs), most 

are linked to the use of intrusive equipment such as ventilators or central venous catheters [6]. In recent 

years, airborne infection emerged as a significant concern in healthcare facilities, due to the novel 
coronavirus outbreak. This is a highly infectious disease caused by severe acute respiratory syndrome 
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coronavirus 2 (SARS-CoV-2) and resulted in more than 6.8 million deaths [7]. Airborne infections are 
caused by tiny pathogenic particles that can remain suspended in the air and be transmitted over long 

distances, ended up inhaled by a susceptible individual. Looking at the catastrophic effects of the 

infections, it is essential to develop more intervention strategies in suppressing the infection risk [8].  
Several known factors could affect the fate of these pollutants including the ventilation layout, air 

change rate, source of pollutants, and human movement effects [9-11]. Satheesan, Mui and Wong [11] 

indicated that the location of the infected patient is critical in determining the range of infection risk to 
other ward occupants. The research team also revealed that increasing the air change rate does not 

necessarily reduce the exposure risk towards the infectious particles. Dao and Kim [12] emphasized 

that air supply and exhaust grilles should be properly designed to allow inlet air stream removing the 
pathogenic particles around the patient to the outlet. led to an increase in the velocity of the airflow in 

the room. Le, Nguyen and Kieu [13] suggested that changing the location of the exhaust air grilles could 

improve the ventilation performance in an airborne isolation room. Research also showed that human 
movement or sliding door motion could adversely impact the air velocity, pressure field and 

contaminant distribution, within general ventilated or specific negative pressure isolation rooms [14-

16].  
An air curtain is made up of a fan unit that creates a barrier against things like heat, moisture, dust, 

odours, insects, and more. The generator is often situated above the door and blows the curtain down 

vertically when it comes to cold store air curtains. While most air curtains do not, some do so via a 
return duct located opposite the air jet output [17]. Implementation of air curtain will cause separation 

of two environments without restricting the opening access of these environments [18]. The sealing of 

cold storage room entrances [19], the apertures of refrigerator display cabinets [20], and smoke 
confinement [21] are the common applications of air curtains in pollution management. Instead of 

taking up as much room as vestibules and obstructing traffic, air curtains limit infiltration. They have 

been around for around 50 years and have their roots in a patent that Van Kennel filed in 1904 [22].  In 
healthcare facilities, air curtains are used in the Protected Occupied Zone Ventilation (POV) and 

Protected Zone Ventilation (PZV) techniques, which function well in blocking the airborne 

transmission pathway, thus lowering the HAI risk. It is discovered that the protection efficiency varies 
from 8% to 50% based on the source air velocity, exhaust location, and partition usage [23]. Cao et al. 

discovered that the dimensionless concentration was 40% less than for fully mixed ventilation when the 

supply air velocity was increased to 4 m/s in the downward plane jet [24]. These investigations also 
revealed that several factors, such as supply velocity, ejection angle, and room geometries, affect how 

well air curtains isolate the pollution emissions [24]. According to Wang, Chaerasari, Rakshit and 

Permana [25], an air-jet curtain with an operating velocity of 0.5 m/s has the highest efficiency at 
lowering contamination to a background level below 400 ppm and minimizing exposure to aerosol 

particles produced by coughing patients. Within the isolation room, it is capable of maintaining the 

pressure differential specified at 8 Pa. Additionally, it is anticipated that using an air-jet curtain will 
improve the security of the isolation room's medical staff. Another study conducted by Ye et al. [26] 

show that an air curtain could decrease 70% to 90% of average pollutants mass fraction sourced from 

patient’s exhalation activity in a consultation room.  
Previous studies have demonstrated the competence of using an air curtain in providing a protective 

zone for the immunocompromised patients. Meanwhile, several studies showed that implementing a 

unidirectional airflow breathing approach reduced the patient's risk of developing HAI [27].  However, 
the efficiency of using a combination of a unidirectional air supply diffuser and air curtain in a patient 

room remains unclear and warrants further studies. On the other hand, the different placement of exhaust 
grilles in patient ward could affect the particle concentration within the critical area of patients. 

Therefore, this study aims to examine the ventilation arrangement of air curtain, ceiling-mounted air 

diffuser and exhaust grilles in reducing particle concentration in the vicinity of the patient. The number 
of particles settled around the patient was used to evaluate the effectiveness of the ceiling-mounted air 

curtain, where a smaller number of deposited particles indicated an efficient ventilation system. Present 

finding could help engineers and designers in deciding the optimal ventilation layout for a single patient 
ward. 
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2 Methodology 

2.1. Description of the CFD model of a patient ward 

Fig. 1 showed a CFD model of a patient ward constructed using Computer-Aided Design (CAD) 

software, with labelled components. The patient ward has a dimension of 4.00 m (L) × 2.50 m (W) × 
2.65 m (H). Two upright-standing healthcare workers were involved in the present study, one of them 

(beige colour) was assumed to be infected with the infectious disease and released the bacteria-carrying 

particles (BCPs). Another healthcare worker (blue colour) was assumed to be a healthy worker and does 
not release any BCPs. Meanwhile, the manikin (green colour) lying on the bed is representing the patient. 

For the baseline case study, clean air was supplied into the room through the air curtain jet with an 

effective surface area of 0.10 m2. Then, the airborne contaminants were extracted via the two exhaust 
grilles (pressure outlet) that were placed at high wall locations, each with an effective area of 0.02 m2. 

 

 

Fig. 1 The CFD model of the patient ward under baseline case ventilation strategy. 

 

2.2 Grid independence test 

In a CFD analysis, insufficient grid density could yield an under/over-predicted result [28]. To make 

sure that the numerical errors in the simulated results are insignificant, a grid-independent test (GIT) 
was carried out [29]. GIT is a method used to identify the ideal grid condition that contains the fewest 

grids while producing a converged and reliable simulated result. GIT has been used in numerous CFD 

studies. However, there is no standard application procedure available. Most studies rely on the 
researcher's experience in choosing the grid settings and the verification test for selecting the optimum 

grid density [30].  In the present study, Grid Convergence Index (GCI) was calculated to evaluate the 

numerical error due to different sets of grid densities. GCI is a relative error bound that describes the 
variation of solutions with mesh refinement [31]. Volk et al. claimed a GCI value of less than 10 % 

could be considered acceptable [32]. A thorough GIT work was performed in authors’ previous work 

[33]. As demonstrated, 6 million tetrahedral are proven sufficient to achieve grid independence (GCI = 
4.3%) and convinced to produce precise simulated result. The further refinement to 12 million mesh 

only contributes to a negligible improvement of prediction accuracy (0.8%) and does not attain the 

computational efficiency. 

2.3 Airflow turbulence and discrete phase models 

According to our previous validation work, an RNG k-ε model was proven to be more reliable in 

predicting the indoor airflow velocities in low turbulence healthcare facilities [29], as compared to 
Reynolds-Averaged Navier-Stokes (RANS) models such as standard k-ε, realizable k-ε, and SST k-ω. 

The validation work shows a good agreement with previous studies, with a relative error of less than 

10 % [11]. In this study, the RNG k-ε model was used to simulate the airflow turbulence in the patient 
ward. The general governing equations can be expressed as in Eq. (1) [34]: 
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where ρ is the air density, V denotes the air velocity vector, φ is the general variable that represents the 
velocity component (u,v,w), Γφ is the effective diffusion coefficient of φ and Sφ are the source terms. 

Meanwhile, a DPM based on the Lagrangian approach was used to track the trajectories of human-

emitted particles. More detailed validation work on predicting particle dispersion could be found in our 
previous study [35]. The stochastic discrete-particle technique was used to account for particle 

dispersion. By integrating each particle's motion, the turbulent dispersion of particles was modelled. 

The discrete random walk (DRW) model, a popular approach which included velocity fluctuations, was 
employed to simulate particle movement in this study [11]. Along with the stochastic behaviour of the 

surrounding turbulent flow, various forces (such as viscous drag, lift force, buoyancy, etc.) acting on 

the Lagrangian particles along their paths are considered [36]. The equation of particle motion is given 
by applying Newton’s second law [12], as expressed in Eq. (2). 
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where  u⃑ p is the particle velocity, FD is the drag force,  u⃑  is the fluid phase velocity, g⃑  is the gravitational 

acceleration, pp is the density of the particle, p is the fluid density,  F⃑⃑  is an additional force. 

Several main assumptions were applied in this numerical study. The air inside the patient ward is 

considered incompressible. Gravitational force, drag force, thermophoretic force and shear lift force 
were incorporated to produce a more realistic result [33]. For simplification, the respiratory activities 

of the human manikin are not included in the case studies. SIMPLE algorithm was employed for the 

pressure-velocity coupling in RANS equations. Second-order discretization upwind scheme was 
applied to solve convection and diffusion terms for flow variables. As recommended by Fluent [37], 

the convergence is achieved when continuity, x-velocity, y-velocity, z-velocity, k and ε reach 10-3. 

Meanwhile, the residual monitoring of energy equation is set as 10 -6. 

2.4 Description of case studies 

The ventilation guidelines of healthcare facilities, as regulated in ASHRAE 170 offers some 

illuminating instructions regarding the ventilation rate in respective healthcare unit [38]. As per 
recommendation, the patient ward should fulfil the minimum requirement of 6 air change rate per hour 

(ach). For the baseline case study (case 1), the air curtain jet operated at 0.44m/s to fulfil such 

requirements. The value of ach could be calculated using Eq. (3) [39]. 

Air change per hour, ACH
Q

V
=   (3) 

where Q is the volumetric flow rate of supplied air per hour and V is the volume of domain involved. 

The volumetric flow rate could be obtain using Eq. (4) [40]. 

Q Av=   (4) 

where 𝐴  represents the effective area of supply air diffuser and 𝑣 denotes the average velocity of 

supplied air. 

A total of four case studies (case 1, case 2, case 3, and case 4) were conducted to examine the effect 
of ventilation layouts on the particle dispersion behaviour of human-emitted particles. For the 

subsequent case studies (case 3 and case 4), the ventilation configuration was varied by installing an 

additional ceiling-mounted diffuser with an effective area of 0.36m2 which operates at 0.12m/s (6ach). 
For case 2 and case 4, the exhaust grilles were moved to the lower wall area where particles tend to 

accumulate over time due to gravitational effect. Humans were considered the source of heat flux in 

this study. An upright standing medical staff and a lying patient released the heat flux of 116 W/m2 and 
58 W/m2, respectively [10]. The patient had a lower heat flux due to the assumption of minimal or no 

physical activity was performed [41]. The human manikins behave as stationary wall motion with no-

slip wall condition. The infected healthcare worker released the bacteria-carrying particle at a rate of 
1.31 x 1012 kg/s (equivalent to 600 particles/min) from the body surfaces. Xu et al. reported that SARS-
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CoV-2 could survive on human skin for more than 9 hours and revealed that skin as the potential 
transmission vector of the disease [42]. Consequently, the skin particles shed by infected personnel, 

could be highly infectious. The released particles are assumed spherical with a diameter of 5 μm and 

density of 2.0 g/cm3, similar to the representative pathogenic particle stated in previous investigation 
[43]. The DPM of healthcare worker, velocity inlets and pressure outlets were set to ‘Escape’ while the 

infected healthcare worker is set to ‘Trap’. The “trap” condition assumed the particles did not 

accumulate enough rebound energy to overcome adhesion after colliding with the wall surface [33]. 
The description of the ventilation layout in each case study and its respective detailed boundary 

conditions were presented in Fig. 2 (a) to Fig. 2 (d), accordingly. 

 

 

(a) 

 

(b) 

 

(c) 
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(d) 

Fig. 2 The detailed boundary conditions applied to the CFD model in (a) case 1, (b) case 2, (c) case 3, and (d) 

case 4. 

 

The summary of descriptions of the variation of ventilation layouts were presented in Table 1. Table 
2 outlined the detailed boundary conditions applied to the computational domain. 

 
Table 1 The description of velocity inlets and location of pressure outlets in each case study. 

Case Velocity inlets Air change rate per hour Location of pressure outlets 

1 Air curtain jet 6 Upper wall 

2 Air curtain jet 6 Bottom wall 

3 Air curtain jet +  

Ceiling-mounted diffuser 

12 Upper wall 

4 Air curtain jet +  

Ceiling-mounted diffuser 

12 Bottom wall 

 
Table 2 Detail description of boundary condition. 

Boundary Name Boundary Type Boundary Conditions 

Air curtain jet Velocity inlet Velocity Magnitude: 0.44m/s 

Direction: Normal to the boundary 

Ceiling mounted 

diffusers 

Velocity inlet Velocity Magnitude: 0.12m/s 

Direction: Normal to the boundary 

Exhaust grilles Pressure outlet Gauge Pressure: 0 Pa 

Infected healthcare 

worker 

Wall Wall motion: Stationary 

Wall condition: No-slip 

Heat flux: 116 W/m2 

Mass flow rate: 1.31 x 1012 kg/s (600 particle/min) 

DPM: Escape 

Patient Wall Wall motion: Stationary 

Wall condition: No-slip 

Heat flux: 58 W/m2 

DPM: Escape 

 

3 Result & discussion 

The increment of the supply air diffuser and manipulation of the exhaust grille could impose 

considerable effects on the airflow distribution in a patient ward. Fig. 3 demonstrated the airflow 
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velocity distribution that cuts through the plane YZ at x = 1.3 m, with vectors indicating the direction 
of airflow. 

 

Fig. 3 The airflow velocity contour on plane YZ at x = 1.3 m for (a) case 1, (b) case 2, (c) case 3, and (d) case 4. 

 

Comparing case 1 and case 2, the changes in airflow distribution were minimal when the position 

of the exhaust grille was moved to the bottom of the wall (near the floor region). However, when an 

additional ceiling-mounted air supply diffuser was installed, the airflow distribution in the ward varied 
significantly. As observed in case 3, the air supply diffuser supplied a higher airflow rate to the patient, 

with an air velocity of 0.12 m/s. Such an occurrence enhances the air change in the ward and promotes 

better air mixing in the entire ward. Meanwhile, in case 4, the active airflow region only increased at 
the right side when the exhaust grilles are located at the lower wall area though the same supply diffuser 

and ventilation rate are operated. Case 4 also demonstrated a greater magnitude of active airflow near 

the floor region. 
Several infection-probability-based models correlated the particle concentration with the infection 

risk [44]. Theoretically, the higher the concentration of the infectious particle in the vicinity of the 

patient, the higher the tendency of a patient to contract the healthcare-associated infection. Therefore, 
the ventilation efficiency is subsequently examined by means of particle mass concentration. A lower 

particle concentration in the patient ward indicated that the ventilation strategy is effective towards 

removing the contaminant from the ward. Figure 4 displayed the particle mass concentration contour 
which cut through the XZ plane at y = 0.91 m for each case study. 

A numerical investigation justified the air curtain jet as a promising strategy to reduce short-range 

transmission in a healthcare setting [45]. According to the simulated result in case 1, the particles 
dispersed by the infected healthcare worker did not penetrate the protective occupied zone provided by 

the air curtain jet. Therefore, the result could be claimed to concur with the previous findings which 
reported the air curtain jet reduced 70 % to 90 % of the average mass fraction of exhaled pollutants [26]. 

As shown in case 2, a higher concentration of particles accumulated at the back of the infected 

healthcare worker. The particle only spread at a longer distance as compared to case 1. This observation 
has indicated that the particle removal efficiency has decreased when the exhaust grilles are located at 

the lower wall region. 

In case 3, the installation of an additional ceiling-mounted supply diffuser at the region above the 
patient increased the ventilation rate from 6 ach to 12 ach. Such a combination of supplied airflow 

greatly reduced the particle concentration and minimized the particle dispersion. A sufficient air change 
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rate is important in diluting and removing indoor pollutants from the indoor environment [46]. Such 
favourable result reflected that the healthcare-associated infection risk could be lowered when installing 

the air curtain jet coupled with the ceiling-mounted air supply diffuser. The utilization of the ventilation 

strategy in case 3 managed to reduce the particle by approximately 3.3 times as compared to the baseline 
case. The highest particle concentration observed in case 1 was approximately 6×10-11 kg/m3, while 

only 1.8×10-11kg/m3 in case 3 (on plane XZ at y = 0.91 m). This height was commonly monitored as 

that is the critical height that particle contamination could settle on a patient, subsequently causing 
infection. Moving to case 4, the particle dispersed further backwards and potentially contaminate the 

breathing zone of another healthcare worker. This phenomenon could be due to the intense airflow 

recirculation at the floor region, which encouraged the resuspension of particles to become airborne. 
When the exhaust grilles are positioned at the lower wall region, only the deposited contaminants could 

be removed. Consequently, the supplied fresh air could hardly reach the entire room and resulted in the 

accumulation of airborne particles in a stagnant airflow zone. 
As evidenced by the better performance of the particle dilution effect in case 1 and case 3 compared 

to case 2 and case 4, it could be deduced that the exhaust grilles should be placed at the upper wall 

instead of the lower walls. Besides, the increment of ventilation rate using an additional air diffuser at 
the region above the patient could be practical to facilitate the removal of airborne particles. 

 

 

Fig. 4 The particle mass concentration contour on plane XZ at y = 0.91 m for (a) case 1, (b) case 2, (c) case 3, and 

(d) case 4. 

 

4 Conclusion 

The effect of ventilation layouts on the dispersion of human-emitted particles was examined using a 

CFD approach. The reliability of CFD results was verified and validated against the measurement data 
published in previous literature. The RNG k-ε model was employed to predict the indoor airflow 

characteristics, while the DPM based on the Lagrangian approach was used to trace the trajectory of 

each airborne particle. Present outcome agreed that air curtain is an effective ventilation strategy to 
prevent the infiltration of airborne contaminants. This study also revealed that both ventilation rate and 

ventilation layout were crucial factors in affecting the contaminant distribution in a patient ward. In this 

study, an air curtain jet coupled with a ceiling-mounted diffuser above the patient-occupying zone 
produced the greatest wiping efficiency against infectious particles. The present study also suggested 
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the exhaust grilles should be placed on the upper wall, to ensure the mixing of fresh air in the entire 
patient ward. In future, transient studies (time-dependent) including human movement and human 

respiratory activities such as breathing, coughing, and sneezing could be considered in deriving more 

comprehensive and realistic conclusions. More advanced ventilation studies should also be investigated 
to optimize the ventilation systems in healthcare facilities, thus minimizing the transmission of 

healthcare-acquired infection. 
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