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ABSTRACT 

A photovoltaic system which enjoys water flow cooling to enhance the performance is considered, and the impact of water flow 
rate variation on energy payback period is investigated. The investigation is done by developing a mathematical model to describe 
the heat transfer and fluid flow. A poly crytalline PV module with the nomical capacity of 150 W that is located in city Tehran, Iran, 
is chosen as the case study. The results show that by incresing water flow rate, EPBP declines first linearly, from the inlet water flow 
rate of 0 to 0.015 kg.s-1, and then, EPBP approaches a constant value. When there is no water flow cooling, EPBP is 8.88, while by 
applying the water flow rate of 0.015 kg.s-1, EPBP reaches 6.26 years. However, only 0.28 further years decreament in EPBP is 
observed when the inlet water mass flow rate becomes 0.015 kg.s-1. Consequently, an optimum limit for the inlet water mass flow 
rate could be defined, which is the point the linear trend turns into approaching a constant value. For this case, as indicated, this 
value is 0.015 kg.s-1. 
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1.  Introduction 
 

There is a strong tendency to replace the fossil fuels with renewable energies, which is motivated 
by the need to have safer, cleaner, and more available supply [1,2]. This reality could necessarily 
transition our built environment, such as office buildings and residential buildings, towards 
renewable energy sources [3,4]. As the concept of GEB (Generating Energy Buildings) has now 
becoming a reality in which a series of innovative technologies such as translucent vacuum insulation 
panels [5-7], smart vacuum insulated windows [8-25], vacuum-based PV integrated solar thermal 
collectors [26,27] and cooling mechanism [28], wind & wave energy systems [29], providing access 
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and monitoring of the electric vehicles charging [30-34] with integration to microgrid [35] and 
utilising waste heat into electricity using thermoelectric [36-39] are the progress towards smart cities.  
It is evident from the aforementioned references that solar thermal energy and insulation 
technologies are playing major role in achieving the built environment sector towards net-zero 
energy.  

 
As one of the most popular kinds of renewable energies, solar energy is predicted to play a serious 

role in the future [40]. However, the concepts of carbon capture-storage and progressive 
technologies of quantum-dot and organic solar cells and new materials [41,42] are going to speed up 
the notion of GEB [43]. Still, using PV modules offers a number of huge benefits that makes it 
favorable worldwide. It originates from the issues like being utilized in different scales, as well as low 
cost compared to other products to provide the electrical energy [44]. Among different types of PV 
technologies, the silicone based (Si-based) type is the most available type in the market. The main 
reason is the low cost of that compared to the other kinds. 

 

Silicon modules typically convert around 20% of solar energy into electricity, and the rest is 
converted into heat. This heat causes the module temperature to rise. As the module heats up, its 
performance decreases and its efficiency decreases. Considering this point, cooling solar modules is 
one of the ways to increase efficiency. One of the common cooling methods is cooling the surface of 
the module by pouring water. Water has a high heat absorption capacity due to its high heat capacity 
and further reduces the surface temperature of the module. 

The following is the research conducted in this regard:  

Javidan and Moghadam [45] investigated the effect of cooling on the photovoltaic module by jet 
impingement cooling with water-acting fluid. They examined the number of nozzles and their 
diameters. Finding the optimal conditions, they found that the temperature of the solar module 
drops from 63.95 °C to 33.68 °C. 

Shahverdian et al. [46] used water flow system for cooling the solar module. They optimized the 
hourly water flow and found that the difference in average cell surface temperature for a cooling 
system with an optimal flow rate compared to a system with a constant flow rate without cooling in 
the module was 16.63 °C and 54.07 °C, respectively. 

Da Silva et al. [47] investigated the effect of water film cooling on the solar module and found 
that this method reduces the panel temperature by about 15 to 19%. 

Luben et al. [48] Experimentally studied the cooling effect on a 240W polycrystalline module. In 
this research, cooling has been done by pouring water and also spraying it. The effect of this cooling 
on current and voltage has been seen. 

Kabeel et al. [49] in an experimental study investigated the effect of cooling and using reflector 
on a photovoltaic solar module. The cooling method in this article is water flow as well as air blower. 
Experimental results show that the net power for the mode without cooling and using the reflector 
is 832 Wh.day-1 and for the mode with reflector and air blower, with reflector and water flow and for 
the mode with reflector and air blower and water flow, it is 912, 1077 and 1010 Wh.day-1. 

Tashtoush and Oqool [50] experimentally investigated the effect of cooling by water flow. In this 
work, an attempt has been made to keep the temperature of the module at a specific temperature, 
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which in this study is 35 °C, 37 °C, 39 °C, 41 °C, 43 °C and 45 °C, and to examine the amount of water 
consumption at each of these temperatures and the rate of increase in power.  

Maj et al. [51] cooled down a 260 W module by dropping water.  For their work, they identified 
9 points on the solar module and observed the effect of cooling on the temperature of these points 
through thermal imaging and compared the power of the module in both cooling and non-cooling 
modes in different radiation. 

Basrawi et al. [52] conducted experimental work in the laboratory to study the cooling of the 
photovoltaic solar module by water cooling. Cooling analysis was investigated in three ways: without 
module cooling, half surface and all cooled surface. This effect is observed on the parameters of 
temperature, current, voltage and power. 

Nazetic et al. [53] analyzed the cooling effect by spraying water on the front and back of the 
module. In this work, they obtained the module temperature in the state without cooling and with 
cooling of the back and front, 54 °C and 24 °C, respectively. 

Reviewing literature shows that although different energy-related important performance 
criteria of a PV system with water flow cooling have been investigated so far, only efficiency has been 
considered as a dimensionless index. In other words, other dimensionless performance indicators of 
such system have not been investigated. Therefore, and based on the indicated gap, in this study, 
energy payback period, as a recently developed concept is chosen, and the impact of changing water 
flow rate on that is investigated through the parametric study.   

 
Fig. 1.  The experimental setup employed in this study to record data [46]  



International Journal of Solar Thermal Vacuum Engineering  

Volume 3, Issue 1 (2021) 73-85 

76 
 

2.  The PV power generation system with water flow cooling 
 

Fig. 1 introduces the studied PV power generation system. As observed, in this system, water 
flows on the surface of PV module and through absorbing the water, the PV module cools down, and 
a part of water is evaporated. The not evaporated water is returned to the tank for using again. The 
water flow rate could be controlled using a valve, while the tank, which keeps the water, is installed 
on a holder, same as the PV module. 
 
3. Modelling  
 

This part gives the details of modelling. Initially, in section3.1, description of modelling from heat 
transfer and fluid flow aspects is presented. Then, part 3.2 explains that how energy payback period 
is calculated. 

 
3.1. Heat transfer and fluid flow 
                

In this section, the modeling of water flow on a photovoltaic solar module is discussed. To achieve 
this, in the first part, the equations governing each layer are given and in the next part, the thermal 
resistances in each layer are discussed. 

3.1.1. Energy balance equation  
  

In this section, 6 layers of water, glass, upper EVA, silicon, bottom EVA and tedlar are modeled. 
The equations are extracted from the literature; including the previous studies of the research team 
[54,55]. 

a) Water layer 

The upper layer is the water layer that flows on the solar module. In Eq.(1), the energy balance 
equation for this layer is written:  

 

, , s

, ,sky

( )
g w w skyw w a w a

w p w w w p w w

conv g w evap conv-w,a rad w

T -T T TdT T -T T -T
m c GA m c T T

dt R R R R


 


        

(1) 

Where wm is the mass of water, 
,p wc is the water specific heat, wT  is the water temperature, t  is 

the time, w  is the water absorptivity, G  is the irradiation, A is the area of module, 
gT is the glass 

temperature, 
,conv g wR 

 is the convective thermal resistance between water and glass, aT is the 

ambient temperature, 
evapR is the evaporative thermal resistance, conv-w,aR  is the convective thermal 

resistance between water and ambient, 
skyT  is the sky temperature and

,skyrad wR 
 is the radiative 

thermal resistance of water. 

b) Glass layer 

The next layer is the glass layer, whose energy balance equation is given in Eq.(2): 
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,

,

g g w EVA1 g
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conv g w EVA1,g

dT T -T T -T
c A GA

dt R R
   



    (2) 

Where 
,p gc  is the glass specific heat, 

g  is the glass thickness, 
g  is the glass density,

gT  is the 

glass temperature,
g is the glass absorptivity,  w  is the water transitivity, EVA1T  is the upper EVA 

temperature and 
EVA1,gR  is the conductivity thermal resistance between upper EVA and glass.   

c) Top EVA layer 

The energy balance of the upper EVA layer is seen in Eq. (3): 

1 EVA1
, 1 1 1

, 1

EVA1 gEVA PV
p EVA EVA EVA

PV EVA EVA1,g

T -TdT T T
c A

dt R R
 


   (3) 

In above equation, 
, 1p EVAc  is the upper EVA specific heat, 1EVA  is the upper EVA thickness, 1EVA

is the upper EVA density, PVT is the silicon temperature and 
, 1PV EVAR is the conductivity thermal 

resistance between upper EVA and silicon layer. 

d) Silicon layer 

The energy balance equation of the silicon layer, which is responsible for converting heat energy 
into electricity, is given in Eq.(4): 

EVA1 EVA2
,P

, 1 2,

PV PV PV
p V PV PV PV g w ele

PV EVA EVA PV

dT T T T T
c A GA P

dt R R
    

 
     

(4) 

Where 
,Pp Vc  is the silicon specific heat, PV is the silicon thickness, PV is the silicon density, , PV

is the silicon absorptivity,  
g  is the glass transitivity, eleP  is the electricity production of module,

EVA2T is the bottom EVA temperature and 
2,EVA PVR is the conductivity thermal resistance between 

bottom EVA and silicon layer. 

e) Bottom EVA layer  

As Eq.(3) for the upper EVA layer is written for this layer: 

2 EVA2 2
, 2 2 2

2, 2,

EVA PV EVA Td
p EVA EVA EVA

EVA PV EVA Td

dT T T T T
c A

dt R R
 

 
   

(5) 

In  Eq.(5), 
, 2p EVAc  is the bottom EVA specific heat, 2EVA is the bottom EVA thickness, 2EVA is the 

bottom EVA density,  TdT  is the tedlar temperature and 
2,EVA TdR is the conductivity thermal resistance 

between bottom EVA and tedlar layer. 

f) Tedlar layer 

The energy balance equation of the substrate of a photovoltaic module, which is the ted layer, is 
shown in Eq.(6): 

Td 2
,Td Td

2, ,gr

Td grEVA Td Td a
p Td

EVA Td conv-Td,a rad Td

T TdT T T T -T
c A

dt R R R
 




    (6) 
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Where 
,Tdpc  is the tedlar specific heat, Td is the tedlar thickness, Td is the tedlar density,  

conv-Td,aR  is the convective thermal resistance between tedlar and ambient, 
grT  is the ground 

temperature and 
,grrad TdR 

is the radiative thermal resistance of tedlar. 

3.1.2.  Thermal resistance 
 

As mentioned above, this section deals with thermal resistance relationships . 

a) Conductive thermal resistance 

The conductive thermal resistance in the solar module is between the layers of glass, upper EVA, 
silicon, bottom EVA and tedlar, which is given in Eq.(7) in general. 

a,b
2 2

a b

a a b b

R
k A k A

 
   (7) 

In the above equation, k  is the thermal conductivity. 

b) Convective thermal resistance 

Eq.(8) is used to calculate the displacement thermal resistance. 

,

1
conv g w

conv

R
h A

   
(8) 

Where convh is the heat transfer coefficient which is given in Eqs (9) and (10). 

0.5 0.33

, 0.332conv g wh Re Pr   (9) 

, , 2.8 3conv Td a conv g ah h U     
(10) 

c) Radiative thermal resistance  

The radiative thermal resistance between the water layer and the air as well as the tedlar and the 
ground are given in Eqs (11) and (12), respectively. 

,

1
rad w sky 2 2

w w sky w sky

R
A(T +T )(T +T )

   
(11) 

,gr 2 2

Td gr

1

(T T )(T T )
rad Td

Td Td gr

R
A

 
 

 
(12) 

Where   is the Stefan-Boltzmann and  is the emissivity. In Eq.(11), skyT
 is calculated as Eq.(13) 

. 

skyT 1.5

a0.0552T  
(13) 

d) Evaporative thermal resistance 

To calculate the heat transfer resulting from water evaporation, the evaporative thermal 
resistance must be determined, which is obtained according to Eqs. (14) to (17). 
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1
evap

evap

R
h A

  
(14) 

w a0.016(P )
evap

w a

P
h

T -T


  (15) 

w

w

5144
P exp 25.317

T

 
  

 
 (16) 

5144
P exp 25.317a

aT

 
  

 
 (17) 

Where   is the relative humidity, and 𝑃 is the partial pressure. 

 
3.1.3.  Electrical model 
 

There are various methods and formulas for calculating the amount of electricity generated in 
the solar module. In one of these methods, holding the temperature of the solar module, the 
efficiency of the module is calculated, which is seen in Eq.(18), and then having the efficiency of the 
module, its power is calculated according to Eq.(19) [56]. 

ref(1 ( ))elec ref PV refT -T     
(18) 

elec elecP GA  (19) 

 
3.2.  Calculating the energy payback period 
 

Energy payback period, which is shown by EPBP in this investigation, is defined by Eq. (20) [57]: 

The numerator in Eq. (20) is the energy consumed during the process of preparing material to 
delivery to the end-user. In order to calculate this parameter, the information reported in [58] is 
utilized. The denominator is also the amount of electricity bought from the network in case there 
were not any PV technologies for power generation. It could be determined based on the governing 
equations presented in part 3.1.                

 
4.  Results and discussion  
 

In this study, a 150 W poly crystalline module, produced by Yingly company is chosen as the 
studied module. It is assumed that this module is installed in city Tehran, Iran from January, which is 
the beginning of the year. The information about the module, as well as the location of the case study 
is completely found in the previous study of the research team [59]. 

The results are provided in Fig. 2. This figure demonstrates that by increasing the inlet water mass 
flow rate, the absorbed heat from the solar module goes up. Therefore, a higher amount of power is 

(20) 
_ _material to delivery

PV

E
EPBP

E
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generated by the PV system. Therefore, the produced power in one internal, and as a result, the 
generated electricity by solar module [60] during a period has an upward trend. The amount of 
energy required for producing the installed capacity of a solar module is constant (the numerator in 
Eq. (20)). The more electricity is produced, the higher denominator is, which is accompanied by a 
lower EPBP. 

 As per Fig. 2, using water flow cooling leads to a considerable improvement in EPBP. When no 
cooling is utilized, EPBP is 8.88 years. By applying the water flow cooling it decreases and reaches 
7.85 years when the inlet water flow rate is 0.005 kg.s-1. An almost linear trend is observed until the 
inlet mass flow rate of 0.015 kg.s-1, where EPBP 6.26 years. It is 29.50 and 20.25% lower than the 
corresponding values for the two previously indicated water inlet flow rates, respectively. 

However, the linear trend changes and the decrease rate declines. The same increment in the 
mass flow rate, i.e., 0.010 kg.s-1 results in only 0.28 years lower EPBP. In other words, EBPB reaches 
5.98 years when the inlet water mass flow rate becomes 0.025 kg.s-1. It indicates that the changes in 
the range of 0.005 to 0.015 kg.s-1, i.e., 1.59 years (7.85-6.26), is 5.68 times bigger than the 
corresponding one in the range of 0.015 to 0.025 kg.s-1 for the inlet water flow rate, which is 0.28 
years.  

The obtained outcome reveals that increasing the inlet water flow is reasonable only in the linear 
range, and after that, EPBP does not change significantly; only the water evaporation and water 
circulation cost have upward trends. Consequently, an optimum limit for the inlet water mass flow 
rate could be considered, which is around 0.015 kg.s-1 for the investigated case study. 

 

 

Fig. 2.  Impact of water flow rate on EPBP 

5.  Conclusions 

 
The impact of the inlet water mass flow rate on the energy payback period (EPBP) of a system 
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with water flow cooling technology was found through conducting a parametric study. A 150 W poly 
crystalline module is considered to be installed in city Tehran, Iran. The system was simulated using 
a developed mathematical model. The results demonstrated that there was an optimum value for 
inlet water mass flow rate. It is the point the linear decrement turned into approaching a constant 
limit. For the investigated case-study the optimum value was found to be 0.015 kg.s-1. Adjusting the 
water flow rate to the optimum condition offered the EPBP of 6.26 years.  
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