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ABSTRACT 

Two phase flow commonly occurs in industrial pipelines, heat exchangers and nuclear power plants. A characteristic feature of two-phase 
flow is that it can acquire various spatial distribution of phases to form different flow patterns/regimes. The first step to successfully 
design, analyze, and operate gas-liquid system is flow regime identification. Flow regime identification is of huge importance to the 
effective operation of facilities for the handling and transportation of multiphase fluids, and it represents one of the most significant 
challenges in petrochemical and thermonuclear industries today. The objective of this study is to develop a methodology for identification 
of flow regime using dynamic pressure signals and deep learning techniques. Three different flow regimes were simulated using a Level-
Set (LS) method coupled with Volume of Fluid (VOF) method in a 6 m horizontal pipe with 0.050 m inner diameter. Dynamic pressure 
readings were collected at a strategic location and were converted to scalograms to be used as inputs in deep learning architectures like 
ResNet-50 and ShuffleNet. Both architectures performed effectively in classifying different flow regime and recorded testing accuracies 
of 85.7% and 82.9% respectively. According to our knowledge no similar research has been reported in literature, where various 
Convolutional Neural Networks are used along with dynamic pressure signals to identify flow regime in horizontal pipe. 
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1. Introduction 

 
Two-phase flow commonly occurs in oil and gas industries, nuclear power plants and heat 

exchangers. An important characteristic of two-phase flow is its ability to acquire different spatial 
arrangements of phases, thus creating different flow patterns. Each pattern has its own 
hydrodynamic behaviour which influence properties like void fraction, pressure drop and heat 
transfer etc. For the successful operation of any two-phase flow, it is crucial to identify flow pattern. 
Different flow regime identification methods exist in literature [1-3]. Traditionally, Close Visual 
Inspection (CVI) was used to determine different flow regimes [4]. This method is highly subjective 
and only possible for easily accessible transparent pipes, which is not always the case in industries.  
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Flow regime can also be identified using the fluctuations of natural flow parameters. This 
approach works on the principle that waveform of these fluctuations is closely related to different 
flow patterns. Example of such flow regime identification methods are void fraction measured by X-
rays [5], rotating electric field conductance gauge [6], electrical capacitance tomography [7], 
conductivity [8], and electrical impedance [9]. The intrusive nature of some of these methods could 
alter flow regime change due to sensors placement within the flow stream. Although excellent results 
can be obtained using radiation techniques, the use of radiation source could lead to health and 
safety related problems. The use of pressure signals is considered a more practical approach because 
pressure data is readily available. That is why pressure fluctuations are widely used to identify flow 
regime [10-13]. 

Recently Machine Learning (ML) techniques are used to process such signals for flow regime 
identification. Mi et al. [9] used void fraction signals to train a neural network and then used the 
trained network to identify different flow regimes. Wang and Zhang [7] used Support Vector Machine 
(SVM) to identify different flow patterns by using capacitance signals from Electrical Capacitance 
Tomography (ECT) system as inputs, Trafalis et al. [14] also used the same method but used 
superficial velocities and pipe diameter as inputs. Neural networks have also been used to process 
signals from conductivity probe [8] and vortex flow meters [15] for flow regime identification.    

Most of the literature is based on using differential pressure along with neural networks to 
identify flow regimes. Differential pressure data needs two pressure reading to be determined at 
different locations and is a cumbersome process. The present method proposes using dynamic 
pressure readings which can be obtained at single location. We will also be using deep learning 
techniques instead of neural networks as classifiers. According to our knowledge, dynamic pressure 
readings along with deep learning techniques have never been used before to identify different flow 
regime in water-air two phase system in horizontal pipe. The difference between traditional and deep 
learning methods is that the former needs hand crafted features extracted from the time and/or 
frequency domains to be fed into the ML algorithms, whereas, in deep learning, the Convolutional 
Neural Networks (CNNs) transform their representation in a more ambiguous manner. Deep learning 
model automatically learns the hidden patterns in the data. In this study, we used two different 
architectures namely ResNet50 and ShuffleNet and compared the performance in terms of 
classification accuracy. 

 
2. Methodology 

 
The methodology for identification of different flow regimes in two phase flow in a horizontal 

pipe is discussed in this section. This section will cover the simulation methodology used to collect 
dynamic pressure signals and neural networks used for classification. 

 
2.1 Geometry 
 

Geometry used in this research is a horizontal pipe with 6 m length and 0.050 m internal 
diameter. The inlet diameter is divided into air and water inlets as shown in Figure 1. Pressure 
readings were recorded for a total duration of 10 seconds at 80D from the inlet. From visual 
observation of contours, flow at this location was fully developed and thus considered appropriate 
for pressure readings.  
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Fig. 1. Geometry of a horizontal pipe used in this study 

 
2.2 Boundary Conditions 
 

The inlet boundary condition was set to be velocity inlet type. Water and gas superficial 
velocities at inlet were chosen using Taitel and Dukler’s flow regime map [4] as shown in Figure 2(c). 
As shown in the Figure 2(a) both phases were injected separately into the pipe. Gas phase was 
introduced into the pipe at the centre region while liquid phase was injected peripherally. The 
boundary condition at outlet was set to outlet pressure which is the value of atmospheric pressure. 
No slip boundary conditions were set on boundary wall. The atmospheric pressure was used as a 
reference and isothermal condition was applied. The surface tension of water-air was offset to 0.072 
N/m. Physical properties of both working medium are listed in Figure 2(b). 

 

 
Fig. 2. Boundary Conditions; (a) Air and Water inlet, (b) Physical properties of air and water (at 20 0C), (c) Water 
and gas superficial velocities used for simulation of different flow regimes, shown in Taitel and Dukler flow 
regime map [4] 

 
 

3.3 Data transformation 
 

Continuous Wavelet Transform (CWT) is a tool that captures the time-frequency features of 
non-stationary signals like pressure signals [16]. The performance of CWT is excellent in the field of 
signal processing [17]. CWT convert pressure signals to scalogram images which are visual 
representation of continuous wavelet coefficients. These two-dimensional scalogram images can be 
used as input for CNN models. A CWT with source wavelet morlet with parameter = 8, was applied 
to the dynamic pressure signals and scalogram images were obtained, which can be expressed 
mathematically by Eq. (1). Some examples of scalogram images for different flow regimes are shown 
in Figure 3. 

𝛹(𝜏) = 𝑒!"!#𝑒
"#$

($&$)                                                                                                                                         (1)                                  
   
The dilated version of Morlet wavelet in frequency domain is given by Eq. (6). 

𝛹(Ꙍ) = 	𝜗√2𝜋𝑒
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$                                                                                                                         (2)                                                                                                        
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where 𝜗  and Ꙍ are constants, the wavelet center frequency is denoted by Ꙍ$. 
 

 
Fig. 3. Scalograms of different flow regimes (a) Stratified flow, (b) Slug flow, (c) Annular flow 

 
3. Results and Discussion 

 
Different two-phase flow regimes have different pressure properties, which makes it possible 

to identify flow regimes using their pressure manifestation. These pressure signals are converted into 
scalograms as shown in Figure 3. These scalogram are used for training and testing of Convolutional 
Neural Networks (CNN), to classify different flow regimes. For the classification of different flow 
regimes using dynamic pressure signals, Resnet50 and ShuffleNet architectures were used. The 
accuracy was chosen as evaluation criteria for both the models.  The Resnet50 achieved higher 
testing accuracy which was 85.7%, while that of ShuffleNet was 82.9%, as shown in Table 1. Both the 
training and validation losses were recorded. The training and validation loss for Resnet50 was 0.641 
and 0.321 respectively, which was higher than ShuffleNet. 
 

Table 1    
Performance of ResNet-50 and ShuffleNet  architectures                                      

Classifier Layers Training Loss Validation loss Validation Accuracy Testing Accuracy 
ResNet-50 177 0.641 0.321 94.44 85.7 
ShuffleNet 172 0.065 0.166 97.22 82.9 

    
In Figure 4(a), the prediction accuracy for stratified, slug and annular flow regime are 90.9%, 

83.3% and 90.9% respectively. Out of 11 signals for annular flow, Resnet50 correctly identified 10 
signals. One of the slug signals was wrongly considered as annular signal. Total number of signals for 
slug flow were 12 and 10 signals were correctly classified while 1 stratified and 1 annular flow signal 
was wrongly predicted as slug. In case of stratified flow, 11 signals were used for testing and 10 of 
them were correctly identified while 1 slug signal was wrongly considered as stratified. In Figure 4(b), 
stratified, slug and annular flow regimes were predicted with 83.3%, 83.3% and 81.8% accuracy, 
respectively. Out of 11 signals for annular flow, ShuffleNet correctly classified 9 signals and one of 
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the slug flow and one stratified flow signal was considered wrongly as annular signal. Total number 
of signals for slug flow were 13 and 10 signals were correctly classified while 1 stratified and 2 annular 
flow signals were wrongly predicted as slug. In case of stratified flow, 11 signals were used for testing 
and 10 of them were correctly identified while 1 slug signals were wrongly considered as stratified.  

 

 
Fig. 4. Confusion matrix of ResNet-50 and ShuffleNet for flow regime classification 

 
4. Conclusions 
 

A method for the identification of  gas-liquid flow regimes in horizontal pipe was developed 
in this work. This method is based on acquiring dynamic pressure signals and its subsequent 
scalograms, followed by their classification using Convolutional Neural Networks (CNNs). Tests were 
performed to validate and weigh the performance of the proposed identification procedure. The 
designed deep learning model has been evaluated against testing dataset. The results suggested that 
the present model has high accuracy in flow pattern identification. The accuracies of predictions in 
stratified, slug and annular flows are all above 80%. The Resnet50 achieved higher overall testing 
accuracy which was 85.7%, while that of ShuffleNet was 82.9%.  ResNet50, prediction accuracy for 
stratified, slug and annular flow regime was 90.9%, 83.3% and 90.9% respectively, while for 
ShuffleNet stratified, slug and annular flow regimes were predicted with 83.3%, 83.3% and 81.8% 
accuracy, respectively. Future work should include new experiments with different orientation of 
pipe, testing broader range of diameters and flow parameters. This work can be taken forward by 
testing more flow conditions near transition boundaries and defining transition boundaries on flow 
regime map. More deep learning architectures can be used to check their effect on accuracy. 
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