Computational one-factor investigation on the effect of sonication parameters in biomass pretreatment

Authors

  • Wah Yen Tey Department of Mechanical Engineering, Faculty of Engineering, UCSI University, Kuala Lumpur, Malaysia; (2) Takasago i-Kohza, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia Kuala Lumpur, Kuala Lumpur, Malaysia https://orcid.org/0000-0002-1865-9212
  • Kiat Moon Lee Department of Chemical and Petroleum Engineering, Faculty of Engineering, UCSI University, Kuala Lumpur, Malaysia https://orcid.org/0000-0003-1126-9657

Keywords:

Ultrasonic irradiation, Biomass energy, Rayleigh-Plesset equation, Moving Least Squares method, Multivariable Power Least Squares method

Abstract

The application of ultrasonic irradiation has been proven as a clean and efficient approach for biomass pretreatment process. However, the effects of sonication parameters on the performance of biomass pretreatment are not well discussed due to its physical complexity. The current work aims to model Rayleigh-Plesset equation (RPE) to investigate how the fluid property of biomass-water (surface tension and dynamic viscosity) and sonication parameters (sonication frequency and power) influence the growth and bounce of microbubbles. The collapsing temperature, collapsing pressure, and shock pressure are computed. Moving Least Squares and Multivariable Power Least Squares Method are applied for multivariate investigation. The results revealed that fluid properties are more significant than sonication parameters.

References

M. Karimi, B. Jenkins, P. Stroeve, Ultrasound irradiation in the production of ethanol from biomass, Renewable and Sustainable Energy Reviews. 40 (2014) 400–421. https://doi.org/10.1016/j.rser.2014.07.151.

I. John, J. Pola, A. Appusamy, Optimization of Ultrasonic Assisted Saccharification of Sweet Lime Peel for Bioethanol Production Using Box–Behnken Method, Waste and Biomass Valorization. 10 (2019) 441–453. https://doi.org/10.1007/s12649-017-0072-1.

J.D. Quek, K.M. Lee, S. Lim, W.Y. Tey, H.S. Kang, K.Q. Lee, Delignification of oil palm empty fruit bunch via ultrasound-assisted deep eutectic solvent pretreatment, IOP Conference Series: Earth and Environmental Science. 463 (2020) 012007. https://doi.org/10.1088/1755-1315/463/1/012007.

K.M. Lee, M.F. Zanil, K.K. Chan, Z.P. Chin, Y.C. Liu, S. Lim, Synergistic ultrasound-assisted organosolv pretreatment of oil palm empty fruit bunches for enhanced enzymatic saccharification: An optimization study using artificial neural networks, Biomass and Bioenergy. 139 (2020) 105621. https://doi.org/10.1016/j.biombioe.2020.105621.

K.S. Suslick, Sonochemistry, Science. 247 (1990) 1439–1445. https://doi.org/10.1126/science.247.4949.1439.

W. Gpel, K.D. Schierbaum, C.G. Vayenas, I. v. Yentekakis, H. Gerischer, W. Vielstich, P.E. Savage, R.B. Moyes, G. Bond, K.S. Suslick, Special Catalytic Systems, in: Handbook of Heterogeneous Cataly-sis, Wiley-VCH Verlag GmbH, Weinheim, Germany, 1997. https://doi.org/10.1002/9783527619474.ch8.

M. Kunaver, E. Jasiukaityt?, N. Cuk, Ultrasonically assisted liquefaction of lignocellulosic materials, Bioresource Technology. 103 (2012) 360–366. https://doi.org/10.1016/j.biortech.2011.09.051.

A. Ranjan, C. Patil, V.S. Moholkar, Mechanistic Assessment of Microalgal Lipid Extraction, Industrial & Engineering Chemistry Research. 49 (2010) 2979–2985. https://doi.org/10.1021/ie9016557.

C.E. Brennen, Bubble Growth and Collapse, in: Fundamentals of Multiphase Flow, Cambridge University Press, 2014: pp. 100–127. https://doi.org/10.1017/cbo9780511807169.005.

S. Merouani, O. Hamdaoui, Y. Rezgui, M. Guemini, Mechanism of the sonochemical production of hydrogen, International Journal of Hydrogen Energy. 40 (2015) 4056–4064. https://doi.org/10.1016/j.ijhydene.2015.01.150.

K. Yasui, Bubble Dynamics, in: Acoustic Cavitation and Bubble Dynamics: Theoretical and Computational Chemistry, 2018: pp. 37–97. https://doi.org/10.1007/978-3-319-68237-2_2.

C.-Y. Yang, T.J. Fang, Combination of ultrasonic irradiation with ionic liquid pretreatment for enzymatic hydrolysis of rice straw, Bioresource Technology. 164 (2014) 198–202. https://doi.org/10.1016/j.biortech.2014.05.004.

H. Wu, X. Dai, S.-L. Zhou, Y.-Y. Gan, Z.-Y. Xiong, Y.-H. Qin, J. Ma, L. Yang, Z.-K. Wu, T.-L. Wang, W.-G. Wang, C.-W. Wang, Ultrasound-assisted alkaline pretreatment for enhancing the enzymatic hydrolysis of rice straw by using the heat energy dissipated from ultrasonication, Bioresource Technology. 241 (2017) 70–74. https://doi.org/10.1016/j.biortech.2017.05.090.

G.D. Saratale, R.G. Saratale, S. Varjani, S.-K. Cho, G.S. Ghodake, A. Kadam, S.I. Mulla, R.N. Bharagava, D.-S. Kim, H.S. Shin, Development of ultrasound aided chemical pretreatment methods to enrich saccharification of wheat waste biomass for polyhydroxybutyrate production and its characterization, Industrial Crops and Products. 150 (2020) 112425. https://doi.org/10.1016/j.indcrop.2020.112425.

K.M. Lee, K.N. Ng, Effect of ultrasonication in Organosolv pretreatment for enhancement of fermentable sugars recovery from palm oil empty fruit bunches, Progress in Energy and Environment. 11 (2019) 15–23. http://www.akademiabaru.com/submit/index.php/progee/article/view/1059.

K. Ninomiya, K. Kamide, K. Takahashi, N. Shimizu, Enhanced enzymatic saccharification of kenaf powder after ultrasonic pretreatment in ionic liquids at room temperature, Bioresource Technology. 103 (2012) 259–265. https://doi.org/10.1016/j.biortech.2011.10.019.

A.I. Khuri, S. Mukhopadhyay, Response surface methodology, Wiley Interdisciplinary Reviews: Computational Statistics. 2 (2010) 128–149. https://doi.org/10.1002/wics.73.

O.A. Fakayode, E.A.A. Aboagarib, D. Yan, M. Li, H. Wahia, A.T. Mustapha, C. Zhou, H. Ma, Novel two-pot approach ultrasonication and deep eutectic solvent pretreatments for watermelon rind delignification: Parametric screening and optimization via response surface methodology, Energy. 203 (2020) 117872. https://doi.org/10.1016/j.energy.2020.117872.

S. Merouani, O. Hamdaoui, Y. Rezgui, M. Guemini, Effects of ultrasound frequency and acoustic amplitude on the size of sonochemically active bubbles-Theoretical study, Ultrasonics Sonochemistry. 20 (2013) 815–819. https://doi.org/10.1016/j.ultsonch.2012.10.015.

B. Sajjadi, P. Asaithambi, A.R. Abdul Aziz, S. Ibrahim, Mathematical analysis of the effects of operating conditions and rheological behaviour of reaction medium on biodiesel synthesis under ultrasound irradiation, Fuel. 184 (2016) 637–647. https://doi.org/10.1016/j.fuel.2016.06.120.

J.H. Lee, W.Y. Tey, K.M. Lee, H.-S. Kang, K.Q. Lee, Numerical simulation on ultrasonic cavitation due to superposition of acoustic waves, Materials Science for Energy Technologies. 3 (2020) 593–600. https://doi.org/10.1016/j.mset.2020.06.004.

W.Y. Tey, H. Alehossein, Z. Qin, K.M. Lee, H.S. Kang, K.Q. Lee, On stability of time marching in numerical solutions of Rayleigh-Plesset equation for ultrasonic cavitation, IOP Conference Series: Earth and Environmental Science. 463 (2020) 012117. https://doi.org/10.1088/1755-1315/463/1/012117.

W.Y. Tey, K.M. Lee, C.S. Nor Azwadi, Y. Asako, Delfim-Soares explicit time marching method for modelling of ultrasonic wave in microalgae pre-treatment, IOP Conference Series: Earth and Environmental Science. 268 (2019) 012106. https://doi.org/10.1088/1755-1315/268/1/012106.

S.C. Chapra, R.P. Canale, Runge-Kutta Methods, in: Numerical Methods for Engineers, 6th ed., McGraw Hill Higher Education, 2010: pp. 707–751.

S. Merouani, O. Hamdaoui, Y. Rezgui, M. Guemini, Energy analysis during acoustic bubble oscillations: Relationship between bubble energy and sonochemical parameters, Ultrasonics. 54 (2014) 227–232. https://doi.org/10.1016/j.ultras.2013.04.014.

E.A. Brujan, T. Ikeda, Y. Matsumoto, On the pressure of cavitation bubbles, Experimental Thermal and Fluid Science. 32 (2008) 1188–1191. https://doi.org/10.1016/j.expthermflusci.2008.01.006.

M.H. Rice, J.M. Walsh, Equation of State of Water to 250 Kilobars, The Journal of Chemical Physics. 26 (1957) 824–830. https://doi.org/10.1063/1.1743415.

S. Merouani, O. Hamdaoui, Y. Rezgui, M. Guemini, Computational engineering study of hydrogen production via ultrasonic cavitation in water, International Journal of Hydrogen Energy. 41 (2016) 832–844. https://doi.org/10.1016/j.ijhydene.2015.11.058.

P. Lancaster, K. Salkauskas, Surfaces generated by moving least squares methods, Mathematics of Computation. 37 (1981) 141–158. https://doi.org/10.1090/S0025-5718-1981-0616367-1.

P. Breitkopf, A. Rassineux, P. Villon, An Introduction to Moving Least Squares Meshfree Methods, Revue Européenne Des Éléments Finis. 11 (2002) 825–867. https://doi.org/10.3166/reef.11.825-867.

K.M. Liew, C. Feng, Y. Cheng, S. Kitipornchai, Complex variable moving least-squares method: A meshless approximation technique, International Journal for Numerical Methods in Engineering. 70 (2007) 46–70. https://doi.org/10.1002/nme.1870.

G.R. Joldes, H.A. Chowdhury, A. Wittek, B. Doyle, K. Miller, Modified moving least squares with polynomial bases for scattered data approximation, Applied Mathematics and Computation. 266 (2015) 893–902. https://doi.org/10.1016/j.amc.2015.05.150.

S. Zheng, R. Feng, A. Huang, A modified moving least-squares suitable for scattered data fitting with outliers, Journal of Computational and Applied Mathematics. 370 (2020) 112655. https://doi.org/10.1016/j.cam.2019.112655.

G.R. Liu, Y.T. Gu, Meshfree Shape Function Construction, in: An Introduction to Meshfree Methods and Their Programming, Springer, Singapore, AA Dordrecht, The Netherlands, 2005: pp. 54–114.

W.Y. Tey, K.M. Lee, Y. Asako, L.K. Tan, N. Arai, Multivariable power least squares method: Complementary tool for Response Surface Methodology, Ain Shams Engineering Journal. 11 (2020) 161–169. https://doi.org/10.1016/j.asej.2019.08.002.

W.Y. Tey, N.A.C.S. Sidik, A. Yutaka, Mohammed W. Muhieldeen, A. Omid, Moving least squares method and its improvement: A concise review, Journal of Applied and Computational Mechanics. (2021) 1–7. https://doi.org/10.22055/JACM.2021.35435.2652.

L.H. Thompson, L.K. Doraiswamy, Sonochemistry: Science and Engineering, Industrial & Engineering Chemistry Research. 38 (1999) 1215–1249. https://doi.org/10.1021/ie9804172.

S. Pilli, S. Yan, P. Bhunia, R.D. Tyagi, R.Y. Surampalli, R.J. LeBlanc, Ultrasonic pretreatment of sludge: A review, Ultrasonics Sonochemistry. 18 (2010) 1–18. https://doi.org/10.1016/j.ultsonch.2010.02.014.

F. Blanchette, T.P. Bigioni, Partial coalescence of drops at liquid interfaces, Nature Physics. 2 (2006) 254–257. https://doi.org/10.1038/nphys268.

V.G. Levich, V.S. Krylov, Surface-Tension-Driven Phenomena, Annual Review of Fluid Mechanics. 1 (1969) 293–316. https://doi.org/10.1146/annurev.fl.01.010169.001453.

L. Shen, F. Denner, N. Morgan, B. van Wachem, D. Dini, Capillary waves with surface viscosity, Journal of Fluid Mechanics. 847 (2018) 644–663. https://doi.org/10.1017/jfm.2018.364.

Z. Dong, C. Yao, Y. Zhang, G. Chen, Q. Yuan, J. Xu, Hydrodynamics and mass transfer of oscillating gas-liquid flow in ultrasonic microreactors, AIChE Journal. 62 (2016) 1294–1307. https://doi.org/10.1002/aic.15091.

S. Zhao, C. Yao, Q. Zhang, G. Chen, Q. Yuan, Acoustic cavitation and ultrasound-assisted nitration process in ultrasonic microreactors: The effects of channel dimension, solvent properties and temperature, Chemical Engineering Journal. 374 (2019) 68–78. https://doi.org/10.1016/j.cej.2019.05.157.

M. Bruce R., Y. Donald F., O. Theodore H., Fundamentals of Fluid Mechanics, Fifth, John Wiley & Sons (Asia) Pte Ltd, Singapore, 2006.

E. Camerotto, S. Brems, M. Hauptmann, A. Pacco, H. Struyf, P.W. Mertens, S. de Gendt, Influence of surface tension on cavitation noise spectra and particle removal efficiency in high frequency ultrasound fields, Journal of Applied Physics. 112 (2012) 114322. https://doi.org/10.1063/1.4768472.

K.M. Lee, J.Y. Hong, W.Y. Tey, Combination of ultrasonication and deep eutectic solvent in pretreatment of lignocellulosic biomass for enhanced enzymatic saccharification, Cellulose. (2021). https://doi.org/10.1007/s10570-020-03598-5.

T. Leong, M. Ashokkumar, S. Kentish, The fundamentals of power ultrasound - A Review, Acoustics Australia. 39 (2011) 54–63. https://doi.org/10.1118/1.3611561.

S.J. Lighthill, Acoustic streaming, Journal of Sound and Vibration. 61 (1978) 391–418. https://doi.org/10.1016/0022-460X(78)90388-7.

W.Y. Tey, Y. Asako, N.A.C. Sidik, R.Z. Goh, Governing equations in computational fluid dynamics: Derivations and a recent review, Progress in Energy and Environment. 1 (2017) 1–19. http://www.akademiabaru.com/submit/index.php/progee/article/view/1026.

Q. Tang, J. Hu, S. Qian, X. Zhang, Eckart acoustic streaming in a heptagonal chamber by multiple acoustic transducers, Microfluidics and Nanofluidics. 21 (2017). https://doi.org/10.1007/s10404-017-1871-1.

C. Eckart, Vortices and Streams Caused by Sound Waves, Physical Review. 73 (1948) 68–76. https://doi.org/10.1103/PhysRev.73.68.

A.J. Sojahrood, H. Haghi, Q. Li, T.M. Porter, R. Karshafian, M.C. Kolios, Nonlinear power loss in the oscillations of coated and uncoated bubbles: Role of thermal, radiation and encapsulating shell damp-ing at various excitation pressures, Ultrasonics Sonochemistry. 66 (2020) Article 105070. https://doi.org/10.1016/j.ultsonch.2020.105070.

Y. Zhang, S. Yuan, L. Wang, Investigation of capillary wave, cavitation and droplet diameter distribution during ultrasonic atomization, Experimental Thermal and Fluid Science. 120 (2021) 110219. https://doi.org/10.1016/j.expthermflusci.2020.110219.

R. Dewil, J. Baeyens, R. Goutvrind, Use of ultrasonics in the treatment of waste activated sludge, Chinese Journal of Chemical Engineering. 14 (2006) 105–113. https://doi.org/10.1016/S1004-9541(06)60045-1.

B. Helfield, J.J. Black, B. Qin, J. Pacella, X. Chen, F.S. Villanueva, Fluid Viscosity Affects the Fragmentation and Inertial Cavitation Threshold of Lipid-Encapsulated Microbubbles, Ultrasound in Medicine & Biology. 42 (2016) 782–794. https://doi.org/10.1016/j.ultrasmedbio.2015.10.023.

I. Tzanakis, G.S.B. Lebon, D.G. Eskin, K.A. Pericleous, Characterizing the cavitation development and acoustic spectrum in various liquids, Ultrasonics Sonochemistry. 34 (2017) 651–662. https://doi.org/10.1016/j.ultsonch.2016.06.034.

S. Muthukumaran, S.E. Kentish, G.W. Stevens, M. Ashokkumar, Application of ultrasound in mam-brane separation processes: A review, Reviews in Chemical Engineering. 22 (2006). https://doi.org/10.1515/REVCE.2006.22.3.155.

L.A. Crum, Comments on the evolving field of sonochemistry by a cavitation physicist, Ultrasonics Sonochemistry. 2 (1995) S147–S152. https://doi.org/10.1016/1350-4177(95)00018-2.

G. Zhang, P. Zhang, J. Gao, Y. Chen, Using acoustic cavitation to improve the bio-activity of activated sludge, Bioresource Technology. 99 (2008) 1497–1502. https://doi.org/10.1016/j.biortech.2007.01.050.

M. Ashokkumar, The characterization of acoustic cavitation bubbles - An overview, Ultrasonics Sono-chemistry. 18 (2011) 864–872. https://doi.org/10.1016/j.ultsonch.2010.11.016.

A. Iskalieva, B.M. Yimmou, P.R. Gogate, M. Horvath, P.G. Horvath, L. Csoka, Cavitation assisted delignification of wheat straw: A review, Ultrasonics Sonochemistry. 19 (2012) 984–993. https://doi.org/10.1016/j.ultsonch.2012.02.007.

J. Luo, Z. Fang, R.L. Smith, Ultrasound-enhanced conversion of biomass to biofuels, Progress in Energy and Combustion Science. 41 (2014) 56–93. https://doi.org/10.1016/j.pecs.2013.11.001.

A. Tiehm, K. Nickel, M. Zellhorn, U. Neis, A. Tiehm, Ultrasonic waste activated sludge disintegration for improving anaerobic stabilization, Water Research. 35 (2001) 2003–2009. https://doi.org/10.1016/S0043-1354(00)00468-1.

N.P. Vichare, P. Senthilkumar, V.S. Moholkar, P.R. Gogate, A.B. Pandit, Energy analysis in acoustic cavitation, Industrial and Engineering Chemistry Research. 39 (2000) 1480–1486. https://doi.org/10.1021/ie9906159.

N.N. Mahamuni, Y.G. Adewuyi, Optimization of the synthesis of biodiesel via ultrasound-enhanced base-catalyzed transesterification of soybean oil using a multifrequency ultrasonic reactor, Energy and Fuels. 23 (2009) 2757–2766. https://doi.org/10.1021/ef900047j.

L. Cherpozat, E. Loranger, C. Daneault, Ultrasonic pretreatment of softwood biomass prior to conventional pyrolysis: Scale-up effects and limitations, Biomass and Bioenergy. 124 (2019) 54–63. https://doi.org/10.1016/j.biombioe.2019.03.009.

N.T. Le, C. Julcour-Lebigue, H. Delmas, An executive review of sludge pretreatment by sonication, Journal of Environmental Sciences (China). 37 (2015) 139–153. https://doi.org/10.1016/j.jes.2015.05.031.

R. Sivaramakrishnan, A. Incharoensakdi, Microalgae as feedstock for biodiesel production under ultra-sound treatment – A review, Bioresource Technology. 250 (2018) 877–887. https://doi.org/10.1016/j.biortech.2017.11.095.

M. Kurokawa, P.M. King, X. Wu, E.M. Joyce, T.J. Mason, K. Yamamoto, Effect of sonication frequency on the disruption of algae, Ultrasonics Sonochemistry. 31 (2016) 157–162. https://doi.org/10.1016/j.ultsonch.2015.12.011.

D. Nagarajan, J.S. Chang, D.J. Lee, Pretreatment of microalgal biomass for efficient biohydrogen production – Recent insights and future perspectives, Bioresource Technology. 302 (2020) 122871. https://doi.org/10.1016/j.biortech.2020.122871.

K.J.Y. Chong, C.Y. Quek, F. Dzaharudin, A. Ooi, R. Manasseh, The effects of coupling and bubble size on the dynamical-systems behaviour of a small cluster of microbubbles, Journal of Sound and Vibration. 329 (2010) 687–699. https://doi.org/10.1016/j.jsv.2009.09.037.

Effects of dynamic viscosity to the fluctuation of instantaneous bubble radius.

Downloads

Published

2021-01-22

How to Cite

[1]
W. Y. Tey and K. M. Lee, “Computational one-factor investigation on the effect of sonication parameters in biomass pretreatment”, Prog. Energy Environ., vol. 16, pp. 18–35, Jan. 2021.
صندلی اداری سرور مجازی ایران Decentralized Exchange

Issue

Section

Original Article
فروشگاه اینترنتی