Review - New prospect of algae for sustainable production of lactic acid: Opportunities and challenges

Authors

  • Siang Aun Cheah Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009 Miri, Sarawak, Malaysia https://orcid.org/0000-0002-3687-3546
  • Choi Yan Chai Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009 Miri, Sarawak, Malaysia
  • Inn Shi Tan Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009 Miri, Sarawak, Malaysia https://orcid.org/0000-0003-1901-8211
  • Henry Chee Yew Foo Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009 Miri, Sarawak, Malaysia
  • Man Kee Lam (1) Chemical Engineering Department, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia; (2) HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia

DOI:

https://doi.org/10.37934/progee.21.1.1928

Keywords:

Algae, Lactic acid, Microorganism, Fermentation, Biochar

Abstract

Heavily dependent on fossil fuels has resulted in severe environmental impacts such as exhaustion of natural resources, contamination of the environment, and excessive greenhouse emission. Therefore, intensive research works to explore alternative and sustainable energy sources has been escalated in recent years. In this regard, algae have been exploited as the third-generation of biomass to produce biofuels and biochemicals. Nevertheless, research to produce lactic acid from algae is still limited in the literature. Hence, this review is aimed to provide an extensive mechanism of deriving lactic acid from algae biomass, started with the discussion of the types of algae, the involvement of other microorganisms, fermentation technology, as well as the bottleneck of the technology. The evolution of different biomass feedstocks for lactic acid production is addressed in the initial section of this paper, followed by a discussion on the perspective of novel cascading algae biorefinery systems to truly reveal the potential of algae-based lactic acid production in a sustainable manner.

References

J. Jambeck, R. Geyer, C. Wilcox, T. Siegler, M. Perryman, A. Andrady, R. Narayan, K. Law, Plastic waste inputs from land into the ocean, Science 347(6223) (2015) 768-771. https://doi.org/10.1126/science.1260352.

A. Djukic-Vukovic, D. Mladenovic, J. Ivanovic, J. Pejin, L. Mojovic, Towards sustainability of lactic acid and poly-lactic acid polymers production, Renewable and Sustainable Energy Reviews108 (2019) 238-252. https://doi.org/10.1016/j.rser.2019.03.050.

J.M. Nduko, S. Taguchi, Microbial production of biodegradable lactate-based polymers and oligomeric building blocks from renewable and waste resources, Frontiers in Bioengineering and Biotechnology. 8 (2020) 618077-618077. https://doi.org/10.3389/fbioe.2020.618077.

S. Parsons, M.J. Allen, F. Abeln, M. McManus, C.J. Chuck, Sustainability and life cycle assessment (LCA) of macroalgae-derived single cell oils, Journal of Cleaner Production 232 (2019) 1272-1281. https://doi.org/10.1016/j.jclepro.2019.05.315.

B. Tsegaye, C. Balomajumder, P. Roy, Microbial delignification and hydrolysis of lignocellulosic biomass to enhance biofuel production: an overview and future prospect, Bulletin of the National Research Centre 43(1) (2019) 1-16. https://doi.org/10.1186/s42269-019-0094-x.

I.S. Tan, M.K. Lam, H.C.Y. Foo, S. Lim, K.T. Lee, Advances of macroalgae biomass for the third generation of bioethanol production, Chinese Journal of Chemical Engineering 28(2) (2020) 502-517. https://doi.org/10.1016/j.cjche.2019.05.012.

A.R. Sirajunnisa, D. Surendhiran, Algae – A quintessential and positive resource of bioethanol production: A comprehensive review, Renewable and Sustainable Energy Reviews 66 (2016) 248-267. https://doi.org/10.1016/j.rser.2016.07.024.

H. Chen, D. Zhou, G. Luo, S. Zhang, J. Chen, Macroalgae for biofuels production: Progress and perspectives, Renewable and Sustainable Energy Reviews 47 (2015) 427-437. https://doi.org/10.1016/j.rser.2015.03.086.

E.T. Kostas, D.A. White, C. Du, D.J. Cook, Selection of yeast strains for bioethanol production from UK seaweeds, J. Appl. Phycol. 28(2) (2016) 1427-1441. https://doi.org/10.1007/s10811-015-0633-2.

Y.Y. Teh, K.T. Lee, W.-H. Chen, S.-C. Lin, H.-K. Sheen, I.S. Tan, Dilute sulfuric acid hydrolysis of red macroalgae Eucheuma denticulatum with microwave-assisted heating for biochar production and sugar recovery, Bioresource Technology 246 (2017) 20-27. https://doi.org/10.1016/j.biortech.2017.07.101.

E.T. Kostas, D.A. White, D.J. Cook, Development of a bio-refinery process for the production of speciality chemical, biofuel and bioactive compounds from Laminaria digitata, Algal Research 28 (2017) 211-219. https://doi.org/10.1016/j.algal.2017.10.022.

N. Dave, R. Selvaraj, T. Varadavenkatesan, R. Vinayagam, A critical review on production of bioethanol from macroalgal biomass, Algal Research 42 (2019) 101606. https://doi.org/10.1016/j.algal.2019.101606.

M. El Harchi, F.Z. Fakihi Kachkach, N. El Mtili, Optimization of thermal acid hydrolysis for bioethanol production from Ulva rigida with yeast Pachysolen tannophilus, South African Journal of Botany 115 (2018) 161-169. https://doi.org/10.1016/j.sajb.2018.01.021.

R.M. Soliman, S.A. Younis, N.S. El-Gendy, S.S.M. Mostafa, S.A. El-Temtamy, A.I. Hashim, Batch bioethanol production via the biological and chemical saccharification of some Egyptian marine macroalgae, Journal of Applied Microbiology 125(2) (2018) 422-440. https://doi.org/10.1111/jam.13886.

T. Suganya, M. Varman, H.H. Masjuki, S. Renganathan, Macroalgae and microalgae as a potential source for commercial applications along with biofuels production: A biorefinery approach, Renewable and Sustainable Energy Reviews 55 (2016) 909-941. https://doi.org/10.1016/j.rser.2015.11.026.

H. Khatoon, N.A. Rahman, S.S. Suleiman, S. Banerjee, A.B. Abol-Munafi, Growth and Proximate Composition of Scenedesmus obliquus and Selenastrum bibraianum Cultured in Different Media and Condition, Proceedings of the National Academy of Sciences, India Section B 89(1) (2019) 251-257. https://doi.org/10.1007/s40011-017-0938-9.

X.J. Lee, H.C. Ong, Y.Y. Gan, W.-H. Chen, T.M.I. Mahlia, State of art review on conventional and advanced pyrolysis of macroalgae and microalgae for biochar, bio-oil and bio-syngas production, Energy Conversion and Management 210 (2020) 112707. https://doi.org/10.1016/j.enconman.2020.112707.

M.P. Sudhakar, B.R. Kumar, T. Mathimani, K. Arunkumar, A review on bioenergy and bioactive compounds from microalgae and macroalgae-sustainable energy perspective, Journal of Cleaner Production 228 (2019) 1320-1333. https://doi.org/10.1016/j.jclepro.2019.04.287.

D. Cizeikiene, G. Juodeikiene, J. Damasius, Use of wheat straw biomass in production of L-lactic acid applying biocatalysis and combined lactic acid bacteria strains belonging to the genus Lactobacillus, Biocatalysis and Agricultural Biotechnology 15 (2018) 185-191. https://doi.org/10.1016/j.bcab.2018.06.015.

R. Alves de Oliveira, A. Komesu, C.E. Vaz Rossell, R. Maciel Filho, Challenges and opportunities in lactic acid bioprocess design—From economic to production aspects, Biochemical Engineering Journal 133 (2018) 219-239. https://doi.org/10.1016/j.bej.2018.03.003.

I. Es, A. Mousavi Khaneghah, F.J. Barba, J.A. Saraiva, A.S. Sant'Ana, S.M.B. Hashemi, Recent advancements in lactic acid production - a review, Food Research International 107 (2018) 763-770. https://doi.org/10.1016/j.foodres.2018.01.001.

J.A. Mora-Villalobos, J. Montero-Zamora, N. Barboza, C. Rojas-Garbanzo, J. Usaga, M. Redondo-Solano, L. Schroedter, A. Olszewska-Widdrat, J.P. López-Gómez, Multi-Product Lactic Acid Bacteria Fermentations: A Review, Fermentation (Basel) 6(1) (2020) 23. https://doi.org/10.3390/fermentation6010023.

M.R.W.Y. Chung, I.S. Tan, H.C.Y. Foo, M.K. Lam, S. Lim, Potential of macroalgae-based biorefinery for lactic acid production from exergy aspect, Biomass Conversion and Biorefinery (2021). https://doi.org/10.1007/s13399-021-01375-3.

K. Okano, T. Tanaka, A. Kondo, Lactic Acid, Bioprocessing of Renewable Resources to Commodity Bioproducts (2014) 353-380. https://doi.org/doi:10.1002/9781118845394.ch13.

M.A. Abdel-Rahman, Y. Tashiro, K. Sonomoto, Recent advances in lactic acid production by microbial fermentation processes, Biotechnology Advances 31(6) (2013) 877-902. http://dx.doi.org/10.1016/j.biotechadv.2013.04.002.

Y. Zhang, A. Kumar, P.R. Hardwidge, T. Tanaka, A. Kondo, P.V. Vadlani, d-lactic acid production from renewable lignocellulosic biomass via genetically modified Lactobacillus plantarum, Biotechnology Progress 32(2) (2016) 271-278. https://doi.org/10.1002/btpr.2212.

K. Ma, G. Hu, L. Pan, Z. Wang, Y. Zhou, Y. Wang, Z. Ruan, M. He, Highly efficient production of optically pure l-lactic acid from corn stover hydrolysate by thermophilic Bacillus coagulans, Bioresource Technology 219 (2016) 114-122. https://doi.org/10.1016/j.biortech.2016.07.100.

K. Yao, Q.-x. Zhou, D.-m. Liu, S.-m. Chen, K. Yuan, Comparative proteomics of the metabolic pathways involved in l-lactic acid production in Bacillus coagulans BCS13002 using different carbon sources, LWT 116 (2019) 108445. https://doi.org/10.1016/j.lwt.2019.108445.

B. Khoshnevisan, M. Tabatabaei, P. Tsapekos, S. Rafiee, M. Aghbashlo, S. Lindeneg, I. Angelidaki, Environmental life cycle assessment of different biorefinery platforms valorizing municipal solid waste to bioenergy, microbial protein, lactic and succinic acid, Renewable and Sustainable Energy Reviews 117 (2020) 109493. https://doi.org/10.1016/j.rser.2019.109493.

A. Komesu, J. de Oliveira, L. Martins, M. Maciel, R. Maciel, Lactic Acid Production to Purification: A Review, BioResources 12(2) (2017) 4364-4383. https://doi.org/10.15376/biores.12.2.Komesu.

I.S. Tan, K.T. Lee, Solid acid catalysts pretreatment and enzymatic hydrolysis of macroalgae cellulosic residue for the production of bioethanol, Carbohydrate Polymers 124 (2015) 311-321. https://doi.org/10.1016/j.carbpol.2015.02.046.

R. Sankaran, R.A. Parra Cruz, H. Pakalapati, P.L. Show, T.C. Ling, W.-H. Chen, Y. Tao, Recent advances in the pretreatment of microalgal and lignocellulosic biomass: A comprehensive review, Bioresource Technology 298 (2020) 122476. https://doi.org/10.1016/j.biortech.2019.122476.

S. Rezania, B. Oryani, J. Cho, A. Talaiekhozani, F. Sabbagh, B. Hashemi, P.F. Rupani, A.A. Mohammadi, Different pretreatment technologies of lignocellulosic biomass for bioethanol production: An overview, Energy 199 (2020) 117457. https://doi.org/10.1016/j.energy.2020.117457.

K. Lee, P. Chantrasakdakul, D. Kim, M. Kong, K.Y. Park, Ultrasound pretreatment of filamentous algal biomass for enhanced biogas production, Waste Manage 34(6) (2014) 1035-1040. https://doi.org/10.1016/j.wasman.2013.10.012.

A. Abraham, A.K. Mathew, H. Park, O. Choi, R. Sindhu, B. Parameswaran, A. Pandey, J.H. Park, B.-I. Sang, Pretreatment strategies for enhanced biogas production from lignocellulosic biomass, Bioresource Technology 301 (2020) 122725. https://doi.org/10.1016/j.biortech.2019.122725.

A.P.B. Mariano, Y. Unpaprom, R. Ramaraj, Hydrothermal pretreatment and acid hydrolysis of coconut pulp residue for fermentable sugar production, Food and Bioproducts Processing 122 (2020) 31-40. https://doi.org/10.1016/j.fbp.2020.04.003.

K.T.X. Tong, I.S. Tan, H.C.Y. Foo, A.C.Y. Tiong, M.K. Lam, K.T. Lee, Third-generation L-Lactic acid production by the microwave-assisted hydrolysis of red macroalgae Eucheuma denticulatum extract, Bioresource Technology 342 (2021) 125880. https://doi.org/10.1016/j.biortech.2021.125880.

C.Y. Chai, I.S. Tan, H.C.Y. Foo, M.K. Lam, K.T.X. Tong, K.T. Lee, Sustainable and green pretreatment strategy of Eucheuma denticulatum residues for third-generation l-lactic acid production, Bioresource Technology 330 (2021) 124930. https://doi.org/10.1016/j.biortech.2021.124930.

Z. Bai, Z. Gao, B. He, B. Wu, Effect of lignocellulose-derived inhibitors on the growth and d-lactic acid production of Sporolactobacillus inulinus YBS1-5, Bioprocess and Biosystems Engineering 38(10) (2015) 1993-2001. https://doi.org/10.1007/s00449-015-1440-5.

C.R. Soccol, V. Faraco, S.G. Karp, L.P.S. Vandenberghe, V. Thomaz-Soccol, A.L. Woiciechowski, A. Pandey, Chapter 14 - Lignocellulosic Bioethanol: Current Status and Future Perspectives, in: A. Pandey, C. Larroche, C.-G. Dussap, E. Gnansounou, S.K. Khanal, S. Ricke (Eds.), Biofuels: Alternative Feedstocks and Conversion Processes for the Production of Liquid and Gaseous Biofuels (Second Edition), Academic Press, 2019: pp. 331-354. https://doi.org/10.1016/B978-0-12-816856-1.00014-2.

M. Hans, S. Kumar, A.K. Chandel, I. Polikarpov, A review on bioprocessing of paddy straw to ethanol using simultaneous saccharification and fermentation, Process Biochemistry 85 (2019) 125-134. https://doi.org/10.1016/j.procbio.2019.06.019.

E.R. Dyartanti, Margono, S.H. Pranolo, B. Setiani, A. Nurhayati, Bioethanol from Sorghum Grain (Sorghum bicolor) with SSF Reaction Using Biocatalyst Co-Immobilization Method of Glucoamylase and Yeast, Energy Procedia 68 (2015) 132-137. https://doi.org/10.1016/j.egypro.2015.03.241.

J. Zhou, J. Ouyang, Q. Xu, Z. Zheng, Cost-effective simultaneous saccharification and fermentation of l-lactic acid from bagasse sulfite pulp by Bacillus coagulans CC17, Bioresource Technology 222 (2016) 431-438. https://doi.org/10.1016/j.biortech.2016.09.119.

S. Jiang, P. Xu, F. Tao, l-Lactic acid production by Bacillus coagulans through simultaneous saccharification and fermentation of lignocellulosic corncob residue Bioresource Technology Rep. 6 (2019) 131-137. https://doi.org/10.1016/j.biteb.2019.02.005.

H.T.V. Lin, M.Y. Huang, T.Y. Kao, W.J. Lu, H.J. Lin, C.L. Pan, Production of Lactic Acid from Seaweed Hydrolysates via Lactic Acid Bacteria Fermentation, Fermentation 6(1) (2020) 37. https://doi.org/10.3390/fermentation6010037.

M.M.R. Talukder, P. Das, J.C. Wu, Microalgae (Nannochloropsis salina) biomass to lactic acid and lipid, Biochemical Engineering Journal 68 (2012) 109-113. https://doi.org/10.1016/j.bej.2012.07.001.

G. De Bhowmick, A.K. Sarmah, R. Sen, Zero-waste algal biorefinery for bioenergy and biochar: A green leap towards achieving energy and environmental sustainability, Science of The Total Environment 650 (2019) 2467-2482. https://doi.org/10.1016/j.scitotenv.2018.10.002.

Graphical abstract

Downloads

Published

2022-10-20

How to Cite

[1]
S. A. Cheah, C. Y. Chai, I. S. Tan, H. C. Y. . Foo, and M. K. Lam, “Review - New prospect of algae for sustainable production of lactic acid: Opportunities and challenges”, Prog. Energy Environ., vol. 21, pp. 19–28, Oct. 2022.
صندلی اداری سرور مجازی ایران Decentralized Exchange

Issue

Section

Review Article
فروشگاه اینترنتی