Current energy recycling technology for agricultural waste in Malaysia

Authors

  • Hui Ming Yow Energy Sustainability Focus Group (ESFG), Faculty of Mechanical & Automotive Engineering Technology, Universiti Malaysia Pahang, Malaysia
  • Amir Abdul Razak Centre for Sustainability of Ecosystem and Earth Resources (Earth Centre), Universiti Malaysia Pahang, Malaysia
  • Adel Aboulqasim Alheemar Researches Center and Manufacturing, Benghazi, Libya

DOI:

https://doi.org/10.37934/progee.27.1.1122

Keywords:

Biomass, Energy sustainability, Sustainable, Agricultural, Green building

Abstract

This article examines the production and use of biomass as a renewable energy source in Malaysia, focusing on the agricultural processing industry. Malaysia produces approximately 168 million tonnes of biomass, including palm oil waste, rice husks, coconut debris, sugar cane waste, urban waste, and forestry waste. The abundance of biomass resources provides a competitive advantage over other renewable energy sources. However, the industry faces restrictions and challenges, such as high disposal costs, high electricity consumption, and related expenses. To address these issues, it is crucial to study the types of biomass available, current technology for biomass energy production (waste-to-energy), and relevant environmental motivations, initiatives, and legislation. This paper analyses the agricultural waste available for energy generation, existing technologies for converting waste into energy, and the role of environmental policies in the agricultural processing business. Energy recycling, which involves utilizing agricultural waste to generate electricity and thermal energy, is proposed as a viable solution. Several technologies are explored, including anaerobic digestion, gasification, incineration/combustion, and pyrolysis, each with advantages and disadvantages. Thermochemical processes are highlighted for their effectiveness, requiring minimal pre-treatment, shorter reaction times, and adaptability to various biomass feedstocks and climatic conditions. The implementation of incentives, initiatives, and policies by the Malaysian government serves as guidelines for the agricultural processing industry to adopt energy recycling practices. By emphasising energy sustainability and promoting green building initiatives, the industry can contribute to a more sustainable and environmentally friendly energy landscape.

References

S. Mah Abdullah, Carbon dioxide emissions causing global warming, New Straits Time, 2017. Retrieved from: https://www.nst.com.my/opinion/columnists/2017/12/313842/carbon-dioxide-emissions-causing-global-warming (accessed Jan. 09, 2024).

A. Sertolli, Z. Gabnai, P. Lengyel, and A. Bai, Biomass Potential and Utilization in Worldwide Research Trends—A Bibliometric Analysis, Sustainability 14(9) (2022) 5515. https://doi.org/10.3390/su14095515.

REN21, Why is renewable energy important, 2019. Retrieved from: https://www.ren21.net/why-is-renewable-energy-important/.

Acciona, Renewable Energy. Retrieved from: https://www.acciona.com/es/energias-renovables/.

The Star, Green Energy Source Going to Waste, 2018. Retrieved from: https://www.mida.gov.my/home/7148/news/green-energy-source-going-to-waste/.

M. Maisarah, C. P. Chien Bong, W. S. Ho, J. S. Lim, Z. A. Muis, H. Hashim, S. Elagroudy, G. L. Hoh Teck, and C. S. Ho, Review on the suitability of waste for appropriate waste-to-energy technology, Chemical Engineering Transaction 63 (2018) 187–192. https://doi.org/10.3303/CET1863032.

C. C. Chang and R. Li, Agricultural waste, Water Environment Research 88(10) (2016) 1334–1373. https://doi.org/10.1002/wer.1211.

J.-F. Mercure and P. Salas, An assessement of global energy resource economic potentials, Energy 46(1) (2012) 322–336. https://doi.org/10.1016/j.energy.2012.08.018.

SynTech Bioenergy, Biomass Advantages and Disadvantages, 2017. Retrieved on: https://www.syntechbioenergy.com/blog/biomass-advantages-disadvantages (accessed Jan. 09, 2024).

L. Chen, G. Msigwa, M. Yang, A.I. Osman, S. Fawzy, D.W. Rooney, and P.-S. Yap, Strategies to achieve a carbon neutral society: a review, Environmental Chemistry Letters 20(4) (2022) 2277–2310. https://doi.org/10.1007/s10311-022-01435-8 (accessed Jan. 09, 2024).

Malaysian Palm Oil Board (MPOB), Palm Oil Extraction Rate, Malaysian Palm Oil Board (MPOB), 2023. Retrieved from: https://bepi.mpob.gov.my/index.php/oil-extraction-rate (accessed Jun. 07, 2023).

E. K. New, T. Y. Wu, S. K. Tnah, A. Procentese, and C. K. Cheng, Pre-treatment and sugar recovery of oil palm fronds using choline chloride:calcium chloride hexahydrate integrated with metal chloride, Energy 277 (2023) 127486. https://doi.org/10.1016/j.energy.2023.127486.

M. H. Zakaria, R. Abu Dardak, and M. F. Ahmad, Business Potential of Coconut-based Products in the Global Markets | FFTC Agricultural Policy Platform (FFTC-AP), FFTC Agricultural Policy Platform (FFTC-AP), 2022. Retrieved from: https://ap.fftc.org.tw/article/3046 (accessed Jun. 07, 2023).

W. C. Government, Agri-Processing, 2019. Retrieved from: https://www.elsenburg.com/content/agri-processing (accessed Jan. 09, 2024).

B. B. Nyakuma, Biomass Energy Outlook in Malaysia using Functions of Innovation Systems, Preprints (Basel) (2018) 2018020158 https://doi.org/10.20944/preprints201802.0158.v1 (accessed Jan. 09, 2024).

(Basel) (2018) 2018020158 https://doi.org/10.20944/preprints201802.0158.v1 (accessed Jan. 09, 2024).

S. Zafar, Biomass Energy Prospect in Malaysia, 2017. Retrieved from: https://www.cleantechloops.com/biomass-energy-in-malaysia/ (accessed Jan. 09, 2024).

S. Mekhilef, R. Saidur, A. Safari, and W. E. S. B. Mustaffa, Biomass energy in Malaysia: Current state and prospects, Renewable and Sustainable Energy Reviews 15(7) (2011) 3360–3370. https://doi.org/10.1016/j.rser.2011.04.016.

Suruhanjaya Tenaga Energy Commission, Energy in Malaysia: Towards a Brighter Future; Suruhanjaya Tenaga Energy Commission: Putrajaya, Malaysia, 2017.

Suruhanjaya Tenaga Energy Commission, Malaysia Energy Statistics Handbook, Department of Energy Management and Industrial Development Suruhanjaya Tenaga (Energy Commission), 2020. Retrieved from https://www.st.gov.my/en/contents/files/download/116/Malaysia_Energy_Statistics_Handbook_20201.pdf (accessed Jan. 09, 2024).

PrimaryEnergy.Com, Energy Recycling: Turning Waste Heat into Added Power, 2018. Retrieved from: https://www.primaryenergy.com/energy-recycling/ (accessed Jan. 09, 2024).

Ministry of Economy Malaysia, Statistic of Major Agriculture Product, Agriculture Division, Ministry of Economy Malaysia, 2023. Retrieved from: https://www.epu.gov.my/en/socio-economic-statistics/economic-statistics/statistic-major-agriculture-product (accessed Jun. 21, 2023).

Department of Statistics Malaysia, Selected Agricultural Indicators, Malaysia 2022, 2022. Retrieved from: https://www.dosm.gov.my/portal-main/release-content/selected-agricultural-indicators-malaysia-2022 (accessed Jun. 21, 2023).

M. Ioelovich, Recent findings and the energetic potential of plant biomass as a renewable source of biofuels - A review, Bioresources 10(1) (2015) 1879–1914. https://doi.org/10.15376/biores.10.1.1879-1914.

S. Yasmeen and N. Yuvarani, Creating Wealth from Waste: Towards Sustainable Agriculture, 2019. Retrieved from: https://ikp.upm.edu.my/artikel/creating_wealth_from_waste_towards_sustainable_agriculture-51163 (accessed Jan. 9, 2024).

B. Z. Bajic, S. N. Dodic, D. G. Vucurovic, J. M. Dodic, and J. A. Grahovac, Waste-to-energy status in Serbia, Renewable and Sustainable Energy Reviews 50 (2015) 1437–1444. https://doi.org/10.1016/j.rser.2015.05.079.

S. Leoi Leoi, Malaysia is overflowing with waste and we're running out of options, 2019. Retrieved from: https://www.thestar.com.my/lifestyle/living/2019/07/16/plastic-waste-landfills (accessed Jan. 9, 2024).

S. T. Tan, W. S. Ho, H. Hashim, C. T. Lee, M. R. Taib, and C. S. Ho, Energy, economic and environmental (3E) analysis of waste-to-energy (WTE) strategies for municipal solid waste (MSW) management in Malaysia, Energy Conversion and Management 102 (2015) 111–120. https://doi.org/10.1016/j.enconman.2015.02.010.

A. H. Bhatt and L. Tao, Economic perspectives of biogas production via anaerobic digestion, Bioengineering 7(3) (2020) 1–19. https://doi.org/10.3390/bioengineering7030074.

J. Zhang and X. Zhang, The thermochemical conversion of biomass into biofuels, in: Biomass, Biopolymer-Based Materials, and Bioenergy, 2019, pp. 327–368. https://doi.org/10.1016/B978-0-08-102426-3.00015-1.

R. Singh, A. Prakash, B. Balagurumurthy, and T. Bhaskar, Hydrothermal Liquefaction of Biomass, in: Recent Advances in Thermochemical Conversion of Biomass, 2015, pp. 269–291. https://doi.org/10.1016/B978-0-444-63289-0.00010-7.

N. T. B. Consultants, About Anaerobic Digestion, 2019. Retrieved from: http://www.biogas-info.co.uk/about/ (accessed Jan. 9, 2024).

M. Maisarah, C. P. Chien Bong, W. S. Ho, J. S. Lim, Z. A. Muis, H. Hashim, S. Elagroudy, G. L. Hoh Teck, and C. S. Ho, Review on the suitability of waste for appropriate waste-to-energy technology, Chemical Engineering Transaction 63 (2018) 187–192. https://doi.org/10.3303/CET1863032.

K. Moustakas, P. Parmaxidou, and S. Vakalis, Anaerobic digestion for energy production from agricultural biomass waste in Greece, Energy 191 (2020) 116556. https://doi.org/10.1016/j.energy.2019.116556.

H. W. Yen and D. E. Brune, Anaerobic co-digestion of algal sludge and waste paper to produce methane, Bioresource Technology 98(1) (2007) 130–134. https://doi.org/10.1016/j.biortech.2005.11.010.

Powersystems, Anaerobic Digestion (AD) A Renewable Energy Technology, 2019. Retrieved from: https://www.powersystemsuk.co.uk/anaerobic-digestion/anaerobic-digestion-renewable-energy-technology/ (accessed Jan. 9, 2024).

P. Y. Hoo, H. Hashim, W. S. Ho, and S. T. Tan, Potential Biogas Generation from Food Waste through Anaerobic Digestion in Peninsular Malaysia, Chemical Engineering Transaction 56 (2017) 373–378. https://doi.org/10.3303/CET1756063.

J. Langerak, POME as a Source of Biomethane, BioEnergy Consult, 2020. Retrieved from: https://www.bioenergyconsult.com/tag/what-is-pome/ (accessed Jan. 9, 2024).

M. Abed, A. M. Radwan, and A. Amin, Review of Biomass Thermal Gasification, 2017. Retrieved from https://www.intechopen.com/books/biomass-volume-estimation-and-valorization-for-energy/review-of-biomass-thermal-gasification (accessed Jan. 9, 2024).

P. Basu, Biomass Gasification and Pyrolysis: Practical Design and Theory. 2010.

P.T.Sekoai and M.O.Daramola, Biohydrogen production as a potential energy fuel in South Africa, Biofuel Research Journal 2(2) (2015) 223–226.

S. Farzad, M. A. Mandegari, and J. F. Görgens, A critical review on biomass gasification, co-gasification, and their environmental assessments, Biofuel Research Journal 12 (2016) 483–495. https://doi.org/10.18331/BRJ2016.3.4.3.

S. L. Narnaware and N. L. Panwar, Biomass gasification for climate change mitigation and policy framework in India: A review, Bioresource Technology Report 17 (2021) 100892. https://doi.org/10.1016/j.biteb.2021.100892.

Z. J. Yong, M. J. K. Bashir, C. A. Ng, S. Sethupathi, J. W. Lim, and P. L. Show, Sustainable Waste-to-Energy Development in Malaysia: Appraisal of Environmental, Financial, and Public Issues Related with Energy Recovery from Municipal Solid Waste, Processes 7(10) (2019) 676. https://doi.org/10.3390/pr7100676.

W. A. W. Ab, K. Ghani, R. A. Moghadam, M. A. M. Salleh, and A. B. Alias, Air Gasification of Agricultural Waste in a Fluidised Bed Gasifier: Hydrogen Production Performance, Energies 2(2) (2009) 258–268. https://doi.org/10.3390/en20200258.

S. Tan, H. Hashim, C. Lee, M. R. Taib, and J. Yan, Economical and environmental impact of waste-to-energy (WTE) alternatives for waste incineration, landfill and anaerobic digestion, Energy Procedia 61, (2014) 704–708. https://doi.org/10.1016/j.egypro.2014.11.947.

Chris, Combined heat and power (CHP) co-generation, Retrieved from: https://www.explainthatstuff.com/combinedheatpower_cogeneration.html (accessed Jan. 9, 2024).

J. Portugal-Pereira, R. Soria, R. Rathmann, R. Schaeffer, and A. Szklo, Agricultural and agro-industrial residues-to-energy: Techno-economic and environmental assessment in Brazil, Biomass Bioenergy 81 (2015) 521–533. https://doi.org/10.1016/j.biombioe.2015.08.010.

O. Sadeghi, A. Fazeli, and M. Bakhtiarinejad, An Overview of Waste-to-Energy in Malaysia, 2015 Applied Mechanics and Materials 695 (2014) 792–796. https://doi.org/10.4028/www.scientific.net/AMM.695.792.

L. Lombardi, E. Carnevale, and A. Corti, A review of technologies and performances of thermal treatment systems for energy recovery from waste, Waste Management 37 (2015) 26–44, https://doi.org/10.1016/j.wasman.2014.11.010.

E. Onoja, S. Chandren, F. I. Abdul Razak, N. A. Mahat, and R. A. Wahab, Oil Palm Biomass in Malaysia: The Present and Future Prospects, Waste Biomass Valorization 10(8) (2019) 2099–2117. https://doi.org/10.1007/s12649-018-0258-1.

S. D. Anuar Sharuddin, F. Abnisa, W. M. A. Wan Daud, and M. K. Aroua, A review on pyrolysis of plastic wastes, Energy Conversion Management 115 (2016) 308–326. https://doi.org/10.1016/j.enconman.2016.02.037.

N. Abdullah, F. Sulaiman, and Z. Aliasak, A Case Study of Pyrolysis of Oil Palm Wastes in Malaysia, AIP Conference Proceeding 336 (2013) 331–336. https://doi.org/10.1063/1.4803619.

H. Hashim and W. S. Ho, Renewable energy policies and initiatives for a sustainable energy future in Malaysia, Renewable and Sustainable Energy Reviews 15(9) (2011) 4780–4787. https://doi.org/10.1016/j.rser.2011.07.073.

SEDA Malaysia, Renewable Energy Incentives. Retrieved from: http://www.seda.gov.my/reportal/re-incentive (accessed Jan. 9, 2024).

Economic Planning Unit, MALAYSIA: The Eleventh Malaysia Plan 2016-2020, 2016. Retrieved from: https://www.ekonomi.gov.my/sites/default/files/2021-05/Chapter%201.pdf (accessed Jan. 9, 2024).

M. Ozturk, N.Saba, V. Altay, R. Iqbal, K.R. Hakeem, M. Jawaid, F.H. Ibrahim, Biomass and bioenergy: An overview of the development potential in Turkey and Malaysia, Renewable and Sustainable Energy Reviews 79 (2017) 1285–1302, https://doi.org/10.1016/j.rser.2017.05.111.

Renewable Energy World, Malaysia's 2011 Proposed Solar, Biomass, Biogas, & Hydro Tariffs, 2010. Retrieved from: https://www.renewableenergyworld.com/2010/08/16/malaysias-2011-proposed-solar-biomass-biogas-hydro-tariffs/ (accessed Jan. 9, 2024).

Sustainable Energy Development Authority Malaysia (SEDA), FiT Dashboard, Sustainable Energy Development Authority Malaysia (SEDA). Retrieved from: https://www3.seda.gov.my/ (accessed Jan. 9, 2024).

Graphical abstract

Downloads

Published

2024-01-15

How to Cite

[1]
H. M. Yow, A. A. . Razak, and A. A. . Alheemar, “Current energy recycling technology for agricultural waste in Malaysia”, Prog. Energy Environ., vol. 27, pp. 11–22, Jan. 2024.
صندلی اداری سرور مجازی ایران Decentralized Exchange

Issue

Section

Review Article
فروشگاه اینترنتی