Synthesis and Characterization of Sn/Ag Nanoparticle Composite as Electro-Catalyst for Fuel Cell

Authors

  • Tan Wei Kang Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100 Kuala Lumpur, Malaysia
  • Siti Husnaa Mohd Taib Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100 Kuala Lumpur, Malaysia
  • Pooria Moozarm Nia Centre of Hydrogen Energy (CHE), Institute of Future Energy, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100 Kuala Lumpur, Malaysia
  • Mikio Miyake Japan Advanced Institute of Science and Technology (JAIST), Asahidai, Nomi, Ishikawa 923-1292, Japan
  • Kamyar Shameli Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100 Kuala Lumpur, Malaysia

DOI:

https://doi.org/10.37934/jrnn.1.1.1221

Keywords:

Sn/Ag nanoparticles, electro-catalyst, polymer electrolyte membrane fuel cell, linear sweep voltammetry

Abstract

In this research, Sn/Ag nanoparticle composite was produced by using chemical reduction method with the aids of sodium borohydride as reducing agent and sodium succinate as protective agent. The XRD, EDX, and TEM analyses showed that the Sn/Ag nanoparticle composite was formed with an average particle size of 4.37 + 0.44 nm. For the application, LSV analysis was done on Sn nanoparticle and Sn/Ag nanoparticle composite samples, and the analysis showed current produced from Sn/Ag nanoparticle composite (4.10 × 10-6 A) is higher than Sn nanoparticle (3.47 × 10-6 A) at the potential of -0.83V.

References

Sharma, G.; Kumar, D;. Kumar, A.; Al-Muhtaseb, A.H.; Pathania, D.; Naushad, M.; Mola, G.T. Revolution from monometallic to trimetallic nanoparticle composites, various synthesis methods and their applications: A review. Mater. Sci. Eng. C 2017, 71, 1216-1230. doi.org/10.1016/j.msec.2016.11.002

Ahmad, M.; Shameli, K.; Zargar, M. Synthesis and antibacterial activity of silver/montmorillonite nanocomposites. Res. J. Biol. Sci. 2009, 4(9), 1032-1036. doi.org/10.2147/IJN.S16043

Jazayeri, S.D.; Ideris, A.; Zakaria, Z.; Shameli, K.; Moeini, H.; Omar, A.R. Cytotoxicity and immunological responses following oral vaccination of nanoencapsulated avian influenza virus H5 DNA vaccine with green synthesis silver nanoparticles. J Control Release 2012, 1, 116-123. doi.org/10.1016/j.jconrel.2012.04.015

Balavandy, S.K.; Shameli, K,; Abidin, Z.Z. Rapid and green synthesis of silver nanoparticles via sodium alginate media. Int. J. Electrochem. Sci. 2015, 1, 486-497.

Ismail, S.; Jalilian, F.A, Talebpur, A.H.; Zargar, M.; Shameli, K. Chemical composition and antibacterial and cytotoxic activities of Allium hirtifolium Boiss. BioMed Res. Int. 2013, 2013, 1-9. doi.org/10.1155/2013/696835

Khandanlou, R.; Ahmad, M.; Fard-Masoumi, H.R.; Shameli,K.; Basri, M. Rapid adsorption of copper (II) and lead (II) by rice straw/Fe3O4 nanocomposite: optimization, equilibrium isotherms, and adsorption kinetics study. Pols one 2015, 10(3), doi.org/1-9. 10.1371/journal.pone.0120264

Miyabayashi, K.; Higashimoto, M.; Shen, Z.; Miyake, M. Site specific deposition of Ag on the corners of Pt nanocubes. Chem. Lett. 2011, 40, 705-707. doi.org/10.1246/cl.2011.705

Chavan, S.; Talange, D. Modeling and performance evaluation of PEM fuel cell by controlling its input parameters. Energy 2017, 138, 437-445. doi.org/10.1016/j.energy.2017.07.070

Özgür, T.; Yakary?lmaz, A.C. A review: Exergy analysis of PEM and PEM fuel cell based CHP systems. Int. J. Hydrog. Energy 2018, 43(38), 17993-18000. doi.org/10.1016/j.ijhydene.2018.01.106

Shao, M.; Chang, Q.; Dodelet, J.; Chenitz, R. Recent Advances in Electrocatalysts for Oxygen Reduction Reaction. Chem. Rev. 2016, 116(6), 3594-3657. doi.org/10.1021/acs.chemrev.5b00462

Shao, M. Palladium-based electrocatalysts for hydrogen oxidation and oxygen reduction reactions. J. Power Sources 2011, 196(5), 2433-2444. doi.org/10.1016/j.jpowsour.2010.10.093

Wang, C.; Daimon, H.; Sun, S. Dumbbell-like Pt?Fe3O4 nanoparticles and their enhanced catalysis for oxygen reduction reaction. Nano Lett. 2009, 9(4), 1493-1496. doi.org/10.1021/nl8034724

Esfandiari, A.; Kazemeini, M.; Bastani, D. Synthesis, characterization and performance determination of an Ag@Pt/C electrocatalyst for the ORR in a PEM fuel cell. Int. J. Hydrog. Energy 2016, 41(45), 20720-20730. doi.org/10.1016/j.ijhydene.2016.09.097

Zhang, Y.; Li, X.; Li, K.; Xue, B.; Zhang, C.; Du, C.; Wu, Z.; Chen, W. Novel Au catalysis strategy for the synthesis of Au@Pt core–shell nanoelectrocatalyst with self-controlled quasi-monolayer Pt skin. ACS Appl. Mater. Interfaces 2017, 9(38), 32688-32697. doi.org/10.1021/acsami.7b08210

Zhang, H.; Song, Y.; Liang, Z.; Zhang, X.; B. Xu, Guo, J. A novel Sn/SnO/graphene triple core-shell heterogeneous catalyst for oxygen reduction reaction. Inorg. Chem. Commun. 2018, 96, 101-105. doi.org/10.1016/j.inoche.2018.07.046

Cheng, Y.; Tian, Y.; Tsang, S. Yan, C. Ag nanoparticles on boron doped multi-walled carbon nanotubes as a synergistic catalysts for oxygen reduction reaction in alkaline media. Electrochim. Acta 2015, 174, 919- doi.org/924. 10.1016/j.electacta.2015.05.183

Xiao, D.; Ma, J.; Chen, C.; Luo, Q.; Ma, J.; Zheng, L.; Zuo, X. Oxygen-doped carbonaceous polypyrrole nanotubes-supported Ag nanoparticle as electrocatalyst for oxygen reduction reaction in alkaline solution. Mater. Res. Bull. 2018, 105, 184-191. doi.org/10.1016/j.materresbull.2018.04.030

Linge, J.M.; Erikson, H.; Kozlova, J.; Sammelselg, V.; Tammeveski, K. Oxygen reduction reaction on electrochemically depositedsilver nanoparticles from non-aqueous solution. J. Electroanal. Chem. 2018, 810, 129-134. doi.org/10.1016/j.jelechem.2018.01.009

Stamenovi?, U.; Gavrilov, N.; Pašti, I.A.; Otoni?ar, M.; ?iri?-Marjanovi?, G. Škapin, S.D.; Mitri?, M.; Vodnik, V. One-pot synthesis of novel silver-polyaniline-polyvinylpyrrolidone electrocatalysts for efficient oxygen reduction reaction. Electrochim. Acta 2018, 281, 549-561. doi.org/10.1016/j.electacta.2018.05.202

Chen, Y.; Liu, S.; Yu, L.; Liu, Q.; Wang, Y.; Dong, L. Efficient carbon-supported Ag-MFe2O4 (M = CO, Mn) core-shell catalysts for oxygen reduction reactions in alkaline media. Int. J. Hydrogen Energy 2017, 42, doi.org/11304-11311. 10.1016/j.ijhydene.2017.03.088

Fu, T.; Huang, J.; Lai, S.; Zhang, S.; Fang, J.; Zhao, J. Pt skin coated hollow Ag-Pt bimetallic nanoparticles with high catalytic activity for oxygen reduction reaction. J. Power Sources 2017, 365, 17-25. doi.org/10.1016/j.jpowsour.2017.08.066

Hernández-Rodríguez, M.; Goya, M.; Arévalo, M.; Rodríguez, J.; Pastor, E. Carbon supported Ag and Ag–Co catalysts tolerant to methanol and ethanol for the oxygen reduction reaction in alkaline media. Int. J. Hydrog. Energy 2016, 41(43), 19789-19798. doi.org/10.1016/j.ijhydene.2016.07.188

Cao, J.; Guo, M.; Wu, J.; Xu, J.; Wang, W.; Chen, Z. Carbon-supported Ag@Pt core–shell nanoparticles with enhanced electrochemical activity for methanol oxidation and oxygen reduction reaction. J. Power Sources 2015, 277, 155-160. doi.org/10.1016/j.jpowsour.2014.12.017

Ruiz-Camacho, B.; Martínez Álvarez, O.; Rodríguez-Santoyo, H.H.; López-Peréz, P.A.; Fuentes-Ramírez, R. Mono and bi-metallic electrocatalysts of Pt and Ag for oxygen reduction reaction synthesized by sonication. Electrochem. Commun. 2015, 61, 5-9. doi.org/10.1016/j.elecom.2015.09.023

Cheng, Y.; Li, W.; Fan, X.; Liu, J.; Xu, W.; Yan, C. Modified multi-walled carbon nanotube/Ag nanoparticle composite catalyst for the oxygen reduction reaction in alkaline solution. Electrochim. Acta 2013, 111, 635-641. doi.org/10.1021/jp022505c

Lim, E.J.; Choi, S.M.; Seo M.H.; Kim, Y.; Lee, S.; Kim, W.B. Highly dispersed Ag nanoparticles on nanosheets of reduced graphene oxide for oxygen reduction reaction in alkaline media. Electrochem. Commun. 2013, 28, 100-103. doi.org/10.1016/j.elecom.2012.12.016

Huang, X.; Zhang, H.; Guo, C.; Zhou, Z.; Zheng, N. Simplifying the creation of hollow metallic nanostructures: One-pot synthesis of hollow palladium/platinum single-crystalline nanocubes. Angew. Chem. Int. Ed. 2009, 48(26), 4808-4812. doi.org/10.1002/anie.200900199

Chee, S.; Lee, J. Synthesis of sub-10-nm Sn nanoparticles from Sn(II) 2-ethylhexanoate by a modified polyol process and preparation of AgSn film by melting of the Sn nanoparticles. Thin Solid Films 2014, 562, 211-217. doi.org/10.1016/j.tsf.2014.04.061

Wang, L., Chen, L., Yan, B., Wang, C., Zhu, F., Jiang, X., Chao, Y.; Yang, G. In situ preparation of SnO2@polyaniline nanocomposites and their synergetic structure for high-performance supercapacitors. J. Mater. Chem. A 2014, 2(22), 8334-8341. doi.org/10.1039/C3TA15266A

Kelgenbaeva, Z.; Omurzak, E.; Ihara, H.; Iwamoto, C.; Sulaimankulova, S.; Mashimo, T. Sn and SnO2 nanoparticles by pulsed plasma in liquid: Synthesis, characterization and applications. Phys. Status Solidi A 2015, 212(12), 2951-2957. doi.org/10.1002/pssa.201532502.

Chen, P-J.; Jeng, H-T. Phase diagram of the layered oxide SnO: GW and electron-phonon studies. Sci. Rep. 2015, 5(16359). doi.org/10.1038/srep16359.

Singh, J.; Girothia, A.; Mandre, K.; Kaurav, N.; Okram, G. Trioctylphosphine and oleylamine induced thermoelectric power of Ag nanoparticles. J. Phys. Conf. Ser. 2014, 534(012035). doi:10.1088/1742-6596/534/1/012035

Downloads

Published

2021-03-07

How to Cite

Wei Kang , T. ., Mohd Taib , S. H. ., Moozarm Nia , P. ., Miyake , M. ., & Shameli, K. (2021). Synthesis and Characterization of Sn/Ag Nanoparticle Composite as Electro-Catalyst for Fuel Cell. Journal of Research in Nanoscience and Nanotechnology, 1(1), 12–21. https://doi.org/10.37934/jrnn.1.1.1221
صندلی اداری سرور مجازی ایران Decentralized Exchange

Issue

Section

Research papers
فروشگاه اینترنتی